The multi-TeV energy of the LHC beams would make this fixed-target physics program unique. As simple as it seems, the high energy LHC beams will allow for the most energetic fixed-target experiments ever performed. We believe that such a facility will be of much interest to a wide range of hadron, nuclear and particle physicists. The collision of the high energy LHC beams with fixed targets, including polarized and nuclei targets will greatly expand the range of fundamental physics phenomena accessible at CERN. The fixed-target mode will permit us to carry out unprecedented precision measurements of hard QCD processes. In particular, our aim is to study: rare configurations of the proton wave function which contain gluon or heavy-quarks with high momentum fraction ;
Compared to the RHIC experiments, which benefit from similar center-of-mass energies, our proposal will bear upon a huge luminosity –typical of a fixed-target set-up– and upon a complete versatility of target species. Compared to Electron-ion collider projects, our proposal will certainly be highly competitive in terms of cost and it will be of complementary design, with a specific focus on the study of parton content at large momentum fractions – in particular that in terms of gluons. High-energy fixed-target experiments have already been discussed in the 90's, both at the European LHC and the American SSC. The main differences between our proposal and earlier ones are :
our proposal is, in essence, a multi-purpose experiment, not only focusing on one specific aspect of particle physics, as it was the case for the LHB project, for instance.
We believe it is well worth exploring this option and bringing our nuclear and particle physicist colleagues' attention to all these new physics opportunities. To do so, we plan to work out the detail of the physics case in adequacy with the current experimental possibilities –and limitations– , to develop a first robust –but ambitious– design of the experiment and its assembly compliant to the physics case, and to advertise our project all over the world-physics community to create an experimental collaboration large enough to make this project viable and fruitful for the years to come.