

AFTER@LHC: A fixed-target programme at the LHC for heavy-ion, hadron, spin and astroparticle physics

Jean-Philippe Lansberg

IPN Orsay, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list

Part I

Assets, Kinematics, Possible Implementations and Luminosities

4 decisive features

4 decisive features

• accessing the high *x* frontier

 $[|x_F| \equiv \frac{|p_z|}{p_{z\,\text{max}}} \to 1]$

- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

4 decisive features

• accessing the high *x* frontier

 $[|x_F| \equiv \frac{|p_z|}{p_{z\,\text{max}}} \to 1]$

- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.
- 3 physics cases

4 decisive features

• accessing the high *x* frontier

$$[|x_F| \equiv \frac{|p_z|}{p_{z\,\text{max}}} \to 1]$$

- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

• High-*x* gluon, antiquark and heavy-quark content in the nucleon & nucleus

4 decisive features

• accessing the high *x* frontier

$$[|x_F| \equiv \frac{|p_z|}{p_{z \max}} \to 1]$$

- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

- High-*x* gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons

4 decisive features

• accessing the high *x* frontier

$$[|x_F| \equiv \frac{|p_z|}{p_{z \max}} \to 1]$$

- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

- High-*x* gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons
- Heavy-ion physics between SPS & RHIC energies towards large rapidities

4 decisive features

• accessing the high *x* frontier

 $[|x_F| \equiv \frac{|p_z|}{p_{z \max}} \rightarrow 1]$

- achieving high luminosities,
- varying the atomic mass of the target almost at will,
- polarising the target.

3 physics cases

- High-*x* gluon, antiquark and heavy-quark content in the nucleon & nucleus
- Transverse dynamics and spin of gluons inside (un)polarised nucleons
- Heavy-ion physics between SPS & RHIC energies towards large rapidities

All this can be realised at CERN in a parasitic mode with the most energetic beams ever!

Nota: all (past) colliders with $E_p \ge 100$ GeV have had a fixed-target program (Tevatron, HERA, SPS, RHIC)

3 / 19

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{\scriptscriptstyle NN}}$	$= \sqrt{2m_N E_{\rm Pb}} \approx 72 {\rm GeV}$	
Boost:	≈ 40	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_{\scriptscriptstyle N} E_{\scriptscriptstyle p}} \approx 115 \mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_{\scriptscriptstyle N}) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{GeV}$		
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_{\scriptscriptstyle N}E_{\scriptscriptstyle p}} \approx 115\mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s}/(2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{\scriptscriptstyle NN}} = \sqrt{2m_{\scriptscriptstyle N}E_{\scriptscriptstyle Pb}} \approx 72\mathrm{GeV}$		
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

 $[y_{c.m.s.} < 0]$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_N) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{\scriptscriptstyle NN}} = \sqrt{2m_{\scriptscriptstyle N}E_{\scriptscriptstyle \mathrm{Pb}}} \approx 72\mathrm{GeV}$		Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[y_{c.m.s.} < 0]$
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$

Energy range

7 TeV proton beam on a fixed target

c.m.s. energy:	$\sqrt{s} = \sqrt{2m_{\scriptscriptstyle N}E_{\scriptscriptstyle p}} \approx 115\mathrm{GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_{\scriptscriptstyle N}) \approx 60$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

c.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{\rm Pb}} \approx 72 {\rm GeV}$	Rapidity shift:	À
Boost: $\gamma \approx 40$	$y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$	***

Such \sqrt{s} allow, for the first time, for systematic studies of W boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost:

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[y_{c.m.s.} < 0]$
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$
- Allows for backward physics up to high $x_{\text{target}} (\equiv x_2)$
 - [uncharted for proton-nucleus; most relevant for p-p $^{\uparrow}$ with large x^{\uparrow}]

- Internal gas target (see next slide)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - · bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$

- Internal gas target (see next slide)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$
- Internal wire target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

- Internal gas target (see next slide)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - · bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$
- Internal wire target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Beam line extracted by a bent crystal

[see S. Radaelli's talk]

· the most ambitious solution

[civil engineering]

- · provides a new facility with 7 TeV proton beam
- · the LHC beam halo is recycled
 - proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$

- Internal gas target (see next slide)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - · bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$
- Internal wire target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Beam line extracted by a bent crystal

[see S. Radaelli's talk]

the most ambitious solution

[civil engineering]

- · provides a new facility with 7 TeV proton beam
- · the LHC beam halo is recycled
 - proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
- Beam splitted by a bent crystal
 - · intermediate option which reduces the civil enginneering [see W. Scandale's & A. Stocchi's talk]
 - · might be coupled to an existing experiment
 - · similar fluxes

- Internal gas target (see next slide)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration via a luminosity monitor (SMOG)
 - bears on the high LHC particle current
 - proton flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & lead flux: $3.6 \times 10^{14} \text{ s}^{-1}$
- Internal wire target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Beam line extracted by a bent crystal

[see S. Radaelli's talk]

 the most ambitious solution · provides a new facility with 7 TeV proton beam [civil engineering]

- the LHC beam halo is recycled • proton flux: 5×10^8 s⁻¹ & lead flux: 2×10^5 s⁻¹
- Beam splitted by a bent crystal
 - · intermediate option which reduces the civil enginneering [see W. Scandale's & A. Stocchi's talk]
 - · might be coupled to an existing experiment
 - · similar fluxes
- Similar luminosities with an internal gas target or a crystal-based solution

SMOG(-like) system

SMOG(-like) system

- · SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- Noble gas directly injected in the VELO

SMOG(-like) system

- · SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- Noble gas directly injected in the VELO

- · Injection of gas in an open-end storage cell
- · Used e.g. at DESY for 10 years

SMOG(-like) system

- · SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- · Noble gas directly injected in the VELO
- / p(He,Ne,Ar), Pb(Ne,Ar) tested : completely parasitic [up to one week, so far]
- New pressure monitoring to be installed
- ✓ Could be coupled to ALICE: ideal demonstrator

- · Injection of gas in an open-end storage cell
- · Used e.g. at DESY for 10 years

SMOG(-like) system

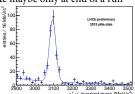
- SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- / p(He,Ne,Ar), Pb(Ne,Ar) tested : completely parasitic [up to one week, so far]
- New pressure monitoring to be installed
- ✓ Could be coupled to ALICE: ideal demonstrator

- · Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- ✓ Dedicated pumping system [turbo-molecular pumps]
- ✓ Pressure in the cell significantly higher [diameter ≤ 2cm in the closed position]
- ✓ Polarised H and D can be injected ballistically with high polarisation
- ✓ Polarised ³He or unpolarised heavy gas (Kr, Xe) can also be injected

SMOG(-like) system

- · SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- ✓ p(He,Ne,Ar), Pb(Ne,Ar) tested : completely parasitic [up to one week, so far]
- ✓ New pressure monitoring to be installed
- ✓ Could be coupled to ALICE: ideal demonstrator
- X No specific pumping system: limit in the gas inject
- X No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- X Kr and Xe maybe only at end of a run

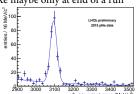
- · Injection of gas in an open-end storage cell
- · Used e.g. at DESY for 10 years
- / Dedicated pumping system [turbo-molecular pumps]
- ✓ Pressure in the cell significantly higher [diameter ≤ 2cm in the closed position]
- ✓ Polarised H and D can be injected ballistically with high polarisation
- ✓ Polarised ³He or unpolarised heavy gas (Kr, Xe) can also be injected


SMOG(-like) system

- $\cdot\;$ SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- ✓ p(He,Ne,Ar), Pb(Ne,Ar) tested : completely parasitic [up to one week, so far]
- ✓ New pressure monitoring to be installed
- ✓ Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limit in the gas inject
- X No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- X Kr and Xe maybe only at end of a run

- · Injection of gas in an open-end storage cell
- · Used e.g. at DESY for 10 years
- ✓ Dedicated pumping system [turbo-molecular pumps]
- ✓ Pressure in the cell significantly higher
 [diameter ≤ 2cm in the closed position]
- ✓ Polarised H and D can be injected ballistically with high polarisation
- ✓ Polarised ³He or unpolarised heavy gas (Kr, Xe) can also be injected
- Not compatible with an injection inside ALICE; only upstream
- X May need complementary vertexing capabilities

SMOG(-like) system


- · SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- · Noble gas directly injected in the VELO
- ✓ p(He,Ne,Ar), Pb(Ne,Ar) tested : completely parasitic [up to one week, so far]
- ✓ New pressure monitoring to be installed
- ✓ Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limit in the gas inject [pressure and duration]
- X No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- X Kr and Xe maybe only at end of a run

- · Injection of gas in an open-end storage cell
- · Used e.g. at DESY for 10 years
- ✓ Dedicated pumping system [turbo-molecular pumps]
- ✓ Pressure in the cell significantly higher [diameter ≤ 2cm in the closed position]
- ✓ Polarised H and D can be injected ballistically with high polarisation
- ✓ Polarised ³He or unpolarised heavy gas (Kr, Xe) can also be injected
- Not compatible with an injection inside ALICE; only upstream
- May need complementary vertexing capabilities

SMOG(-like) system

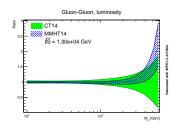
- · SMOG: System for Measuring Overlap with Gas
- · Designed for precise luminosity determination
- Noble gas directly injected in the VELO
- ✓ p(He,Ne,Ar), Pb(Ne,Ar) tested : completely parasitic [up to one week, so far]
- ✓ New pressure monitoring to be installed
- ✓ Could be coupled to ALICE: ideal demonstrator
- No specific pumping system: limit in the gas inject
- X No possibility to use polarised gases
- Gas flows in the beampipe; pressure profile not optimised
- X Kr and Xe maybe only at end of a run

HERMES(-like) system

- · Injection of gas in an open-end storage cell
- Used e.g. at DESY for 10 years
- / Dedicated pumping system [turbo-molecular pumps]
- ✓ Pressure in the cell significantly higher [diameter ≤ 2cm in the closed position]
- ✓ Polarised H and D can be injected ballistically with high polarisation
- ✓ Polarised ³He or unpolarised heavy gas (Kr, Xe) can also be injected
- Not compatible with an injection inside ALICE; only upstream
- X May need complementary vertexing capabilities

The simulations showed in Part III are based on this set-up coupled to a LHCb like detector

Part II

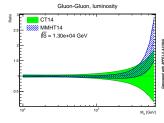

Physics Motivation

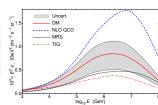
Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

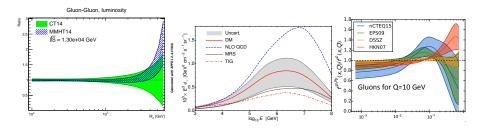



Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

· Proton charm content important to high-energy neutrino & cosmic-rays physics



Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

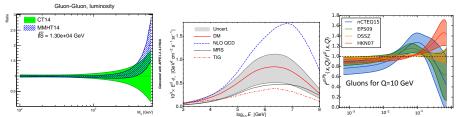
Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

Best to take data at large x and small scale, than at large scale: advantange of low E; provided HT are under control

High-*x* frontier


Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

Best to take data at large x and small scale, than at large scale: advantange of low E; provided HT are under control

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

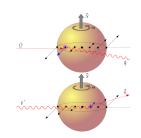
Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_g$ [First hint by COMPASS that $\mathcal{L}_g \neq 0$]

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons


Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g:q}$:

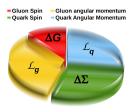
$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

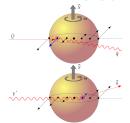
Test of the QCD factorisation framework

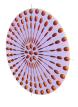
[First hint by COMPASS that $\mathcal{L}_g \neq 0$] [beyond the DY A_N sign change]

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g,g}$:

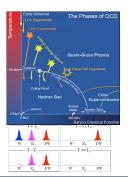

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$
 [First hint by COMPASS that $\mathcal{L}_g \neq 0$]


Test of the QCD factorisation framework

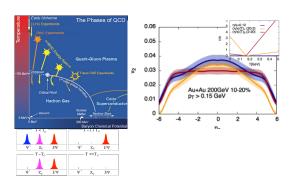

[beyond the DY A_N sign change]

Determination of the linearly polarised gluons in unpolarised protons

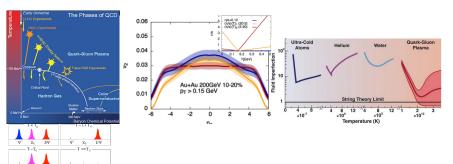
[once measured, allows for spin physics without polarised proton, e.g. at the LHC]



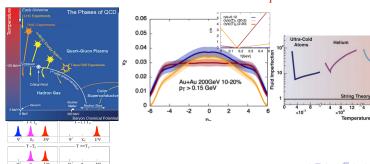
Heavy-ion collisions towards large rapidities


Heavy-ion collisions towards large rapidities

A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]


Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, Y, D, J/\psi \leftarrow b + \text{pairs})$]
 - Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation


Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation

Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- Explore the longitudinal expansion of QGP formation
- Test the factorisation of cold nuclear effects from p + A to A + B collisions

Quark-Gluon

Part III

A selection of projected performances

What is not covered by lack of time

Azimuthal anisotropies

[Heavy-Ion, Spin]

Photon related observables

[High-x, Spin, Heavy-Ion]

W boson

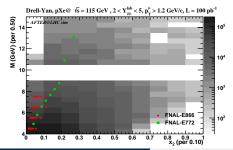
[High-x, Spin]

• Antiproton and related x-section measurements for astroparticle MC tuning

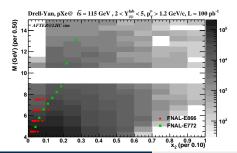
[High-x]

C-even quarkonia

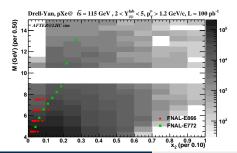
[High-x, Spin, Heavy-Ion]

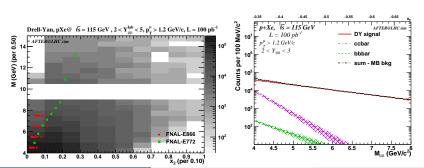

Associated production

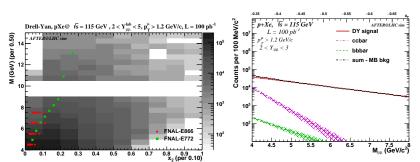
[Spin, Heavy-Ion]

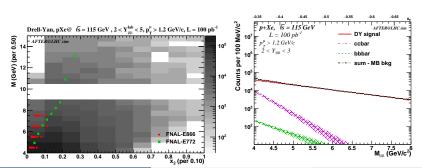

Ultra-peripheral collisions

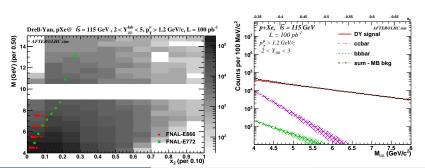
[Spin, High-x]

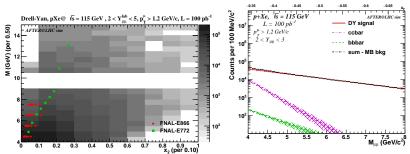

 Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).


- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- · Same acceptance for pp collisions


- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- · Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]


- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- · Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Combinatorial Background well under control


- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- · Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- · Combinatorial Background well under control
 - combinatorial background easily subtracted using the large like-sign yields


- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- · Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
 - Combinatorial Background well under control
 - combinatorial background easily subtracted using the large like-sign yields
 - left over charm and beauty interesting on their own [although accessible by other means]

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- · Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Combinatorial Background well under control
- combinatorial background easily subtracted using the large like-sign yields
- left over charm and beauty interesting on their own [although accessible by other means]
- one could refine with mixing event techniques [needed for PbA systems]

- Unique acceptance (with a LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit (E866 & E772 @ Fermilab).
- · Same acceptance for pp collisions
- Extremely large yields up to $x_2 \rightarrow 1$ [plot made for pXe with a Hermes like target]
- Combinatorial Background well under control
- combinatorial background easily subtracted using the large like-sign yields
- left over charm and beauty interesting on their own [although accessible by other means]
- one could refine with mixing event techniques [needed for PbA systems]
- No existing measurements at RHIC

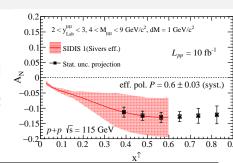
DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

[See O. Denisov's talk]

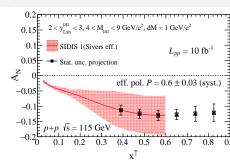
DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

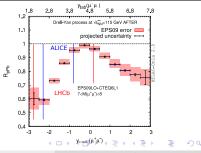
[See O. Denisov's talk]

Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!


DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

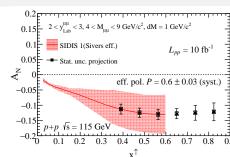
- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, one simply goes from an exploration phase to a consolidation phase

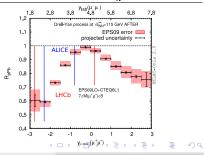

DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)


- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, one simply goes from an exploration phase to a consolidation phase
- Novel constraints on the quark nuclear PDF with DY in *pA* collisions

DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, one simply goes from an exploration phase to a consolidation phase
- Novel constraints on the quark nuclear PDF with DY in *pA* collisions
- Stat. uncertainties smaller than nPDF: discrimating power [only 1 bin out of 5 shown; global syst. : *pp* vs *pA* lumi.]



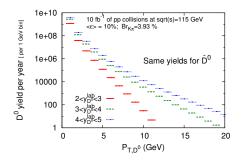


DY pair production on a transversely polarised target is the aim of several experiment (COMPASS, E1039, STAR, E1039)

- Check the sign change in A_N DY vs SIDIS: hot topic in spin physics!
- With a highly polarised gas target, one simply goes from an exploration phase to a consolidation phase
- Novel constraints on the quark nuclear PDF with DY in *pA* collisions
- Stat. uncertainties smaller than nPDF: discrimating power [only 1 bin out of 5 shown; global syst. : *pp* vs *pA* lumi.]
- With the muon spectrometer of ALICE and its absorber, opportunity to study DY in PbA coll.

 [Only done once at SPS; no effect seen]

Extremely good prospects to measure charm

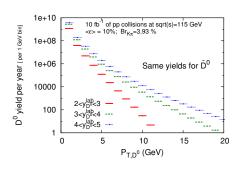

- Extremely good prospects to measure charm
 - down to zero p_T

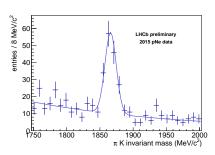
[total x-section]

 $[x_F \rightarrow -1]$

over a wide rapidity coverage

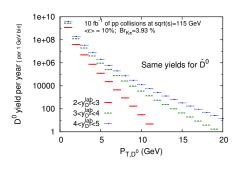
with extremely high statistiscal precision in *pp*, *pA* and *AA* collisions

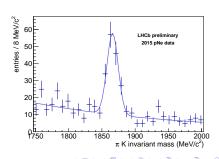

- Extremely good prospects to measure charm
 - · down to zero p_T


[total x-section]

over a wide rapidity coverage

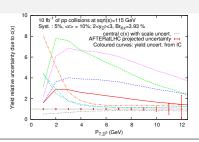
- $[x_F \rightarrow -1]$
- with extremely high statistiscal precision in *pp*, *pA* and *AA* collisions
- With a LHCb-like detector, the background is well under control [see below]


AFTER@LHC

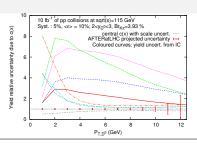


over a wide rapidity coverage

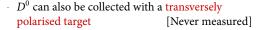
- Extremely good prospects to measure charm
 - down to zero p_T [total x-section]
 - with extremely high statistiscal precision in pp, pA and AA collisions
- With a LHCb-like detector, the background is well under control [see below]
- Looking at $D \rightarrow K\pi$ gives direct acces to charm anticharm asymmetries

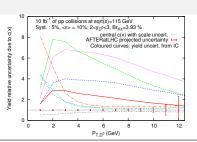


 $[x_F \rightarrow -1]$

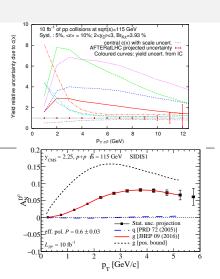

This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin


- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos


[not well constrained by lack of inputs]

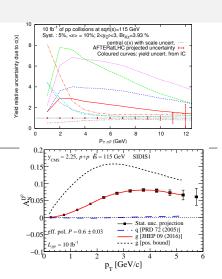
- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos


 [not well constrained by lack of inputs]

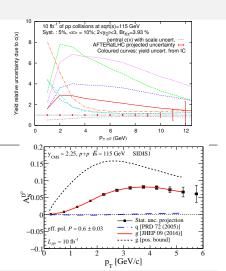


- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos

 [not well constrained by lack of inputs]
- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to \mathcal{L}_g]



- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos
 [not well constrained by lack of inputs]
- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to \mathcal{L}_g]
- Differences in $A_N^{D^0}$ and $A_N^{\bar{D}^0}$ gives acces to C-odd correlators [No other facility can measured this]



- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos

 [not well constrained by lack of inputs]
- D^0 can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to \mathcal{L}_g]
- Differences in $A_N^{D^0}$ and $A_N^{\bar{D}^0}$ gives acces to C-odd correlators [No other facility can measured this]
- · Precision at the per cent level

- This huge data sample over a wide kinematical coverage gives a unique handle on the charm content in the proton at high *x*
- Longstanding debate in the QCD community: pertubative vs. non-perturbative origin
- Relevant for cosmic neutrinos
 [not well constrained by lack of inputs]
- D⁰ can also be collected with a transversely polarised target [Never measured]
- Gives access to the tri-gluon correlation and the gluon Sivers effect [related to \mathcal{L}_g]
- Differences in $A_N^{D^0}$ and $A_N^{\bar{D}^0}$ gives acces to C-odd correlators [No other facility can measured this]
- · Precision at the per cent level

As for AA collisions, nuclear modification factors vs p_T , y, centrality as well as azimuthal anisotropies (v_2) can be of course measured [no time to cover them]

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

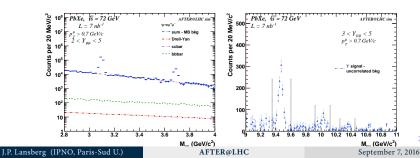
Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV

[Rapidity coverage important to pin down nuclear effects]

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV [Rapidity coverage important to pin down nuclear effects]
- Typically 10⁹ charmonia, 10⁶ bottomonia per year

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

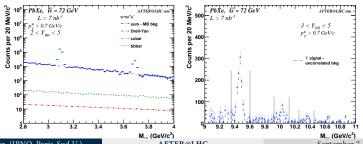

- Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV [Rapidity coverage important to pin down nuclear effects]
- Typically 109 charmonia, 106 bottomonia per year
- Unique opportunity to access *C*-even quarkonia $(\chi_{c,b}, \eta_c)$ + associated production

Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

- Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV [Rapidity coverage important to pin down nuclear effects]
- Typically 10⁹ charmonia, 10⁶ bottomonia per year
- Unique opportunity to access *C*-even quarkonia ($\chi_{c,b}$, η_c) + associated production
- Full background simulations show very good prospects in all systems

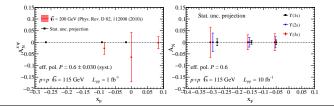
[worst scenario (PbA) shown below]

16 / 19

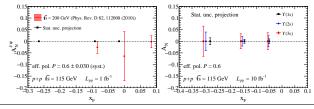


Our aim is to measure a complete set of heavy-flavours to use them as tools [gluon luminometers (TMDs, PDFs, nPDFs), QGP effects]

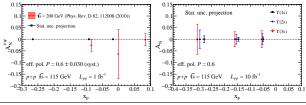
- Wide rapidity coverage; P_T up 15 GeV, down to 0 GeV [Rapidity coverage important to pin down nuclear effects]
- Typically 10⁹ charmonia, 10⁶ bottomonia per year
- Unique opportunity to access C-even quarkonia $(\chi_{c,b}, \eta_c)$ + associated production
- Full background simulations show very good prospects in all systems


[worst scenario (PbA) shown below]

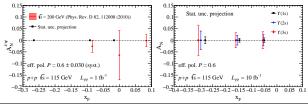
In PbA collisions, one can repeat the celebrated Y(nS) CMS analysis in a new energy domain



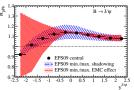
· A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]


• A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]

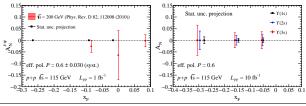
- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]
- Completely new perspectives to study the gluon Sivers effect [and beyond $ightarrow \mathcal{L}_g$]

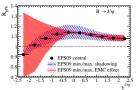


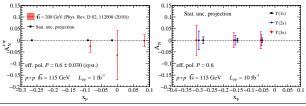
- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]
- Completely new perspectives to study the gluon Sivers effect ${\color{blue} [}$ and beyond ${\color{blue} \rightarrow \mathcal{L}_g]}$

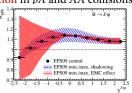


pA: constrain the gluon antishadowing and EMC effects; $pD: g_n(x) \stackrel{?}{=} g_p(x)$


- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]
- Completely new perspectives to study the gluon Sivers effect [and beyond $ightarrow \mathcal{L}_g$]


pA: constrain the gluon antishadowing and EMC effects; $pD : g_n(x) \stackrel{?}{=} g_p(x)$


- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]
 - Completely new perspectives to study the gluon Sivers effect [and beyond $ightarrow \mathcal{L}_g$]


- pA: constrain the gluon antishadowing and EMC effects; $pD : g_n(x) \stackrel{?}{=} g_p(x)$
- One could access η_c production in pA collisions for the first time

- A_N for all quarkonia $(J/\psi, \psi', \chi_c, \Upsilon(nS), \chi_b \& \eta_c)$ can be measured [So far, only J/ψ by PHENIX with large uncertainties]
- Completely new perspectives to study the gluon Sivers effect [and beyond $\rightarrow \mathcal{L}_g$]

- pA: constrain the gluon antishadowing and EMC effects; $pD: g_n(x) \stackrel{?}{=} g_p(x)$
- One could access η_c production in pA collisions for the first time
- High stat. \rightarrow quarkonium polarisation in pA and AA collisions [\rightarrow production/suppression mechanisms]

Part IV

Conclusion and outlooks

• Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]

- Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]
 - The high *x* frontier: new probes of the confinement and connections with astroparticles

- Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]
 - The high *x* frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of the partons

- Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]
 - The high *x* frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of the partons
 - The approach to the deconfinement phase transition:

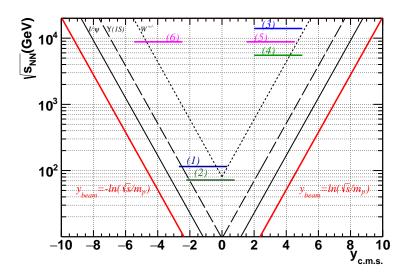
 new energy, new rapidity domain and new probes

- Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]
 - The high *x* frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of the partons
 - The approach to the deconfinement phase transition:

 new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams

- Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]
 - The high *x* frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of the partons
 - The approach to the deconfinement phase transition:
 new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...

- Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]
 - The high *x* frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of the partons
 - The approach to the deconfinement phase transition:
 new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...
- An Expression of Interest to be submitted to the LHCC is being written


- Three main themes push for a fixed-target program at the LHC [without interfering with the other experiments]
 - The high *x* frontier: new probes of the confinement and connections with astroparticles
 - The nucleon spin and the transverse dynamics of the partons
 - The approach to the deconfinement phase transition:
 new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...
- An Expression of Interest to be submitted to the LHCC is being written
- Webpage: http://after.in2p3.fr

Part V

Backup slides

LHCb acceptance as a function of the colliding modes

Nota: similar for the ALICE spectrometer

September 7, 2016

Heavy-Ion Physics

- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at $\sqrt{s_{NN}}$ = 115 GeV and Pb+p collisions at $\sqrt{s_{NN}}$ = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv. High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a
 TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]].
 Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

Hadron structure

- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC).
 by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
 By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon
 by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of ∃_{cc} at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

Feasibility study and technical ideas

- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Fast simulation using LHCb reconstruction parameters

Projection for a LHCb-like detector

L. Massacrier, B. Trzeciak, et al., Adv.Hi.En.Phys. (2015) 986348

- Simulations with Pythia 8.185
- the LHCb detector is NOT simulated but LHCb reconstruction parameters are introduced in the fast simulation (resolution, analysis cuts, efficiencies,...)
- Requirements:
 - Momentum resolution : $\Delta p/p = 0.5\%$
 - Muon identification efficiency: 98%
- Cuts at the single muon level
 - $2 < \eta_{\mu} < 5$
 - $p_{T\mu} > 0.7 \text{ GeV}$
- Muon misidentification:
 - If π and K decay before the calorimeters (12m), they are rejected by the tracking
 - otherwise a misidentification probability is applied following: F. Achilli et al, arXiv:1306.0249