

A Fixed-Target Programme at the LHC

J.P. Lansberg

IPN Orsay – Paris-Sud U./Paris Saclay U. –CNRS/IN2P3 Rencontre QGP France, Etretat, July 4, 2018

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list

Part I

The AFTER@LHC programme

2 / 21

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky a, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg c,*

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

1 IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

	Introduction	Deconfinement in heavy-ion collisions	
	Key numbers and features		6.1. Quarkonium studies
v.	Nucleon partonic structure		6.2. Jet quenching
	3.1. Drell-Yan		6.3. Direct photon
	3.2. Gluons in the proton at large x		6.4. Deconfinement and the target rest frame
	3.2.1. Quarkonia		6.5. Nuclear-matter baseline
	3.2.2. Jets	7.	W and Z boson production in pp, pd and pA collisio
			7.1. First measurements in pA
	3.2.3. Direct/isolated photons		7.2. W/Z production in pp and pd
	3.3. Gluons in the deuteron and in the neutron	8.	Exclusive, semi-exclusive and backward reactions.
	3.4. Charm and bottom in the proton		8.1. Ultra-peripheral collisions
	3.4.1. Open-charm production		8.2. Hard diffractive reactions
	3.4.2. $J/\psi + D$ meson production		8.3. Heavy-hadron (diffractive) production at x _F
	3.4.3. Heavy-quark plus photon production		8.4. Very backward physics
	Spin physics		8.5. Direct hadron production
	4.1. Transverse SSA and DY	9.	Further potentialities of a high-energy fixed-target
	4.2. Quarkonium and heavy-quark transverse SSA		9.1. D and B physics
	4.3. Transverse SSA and photon		9.2. Secondary beams
	4.4. Spin asymmetries with a final state polarization		9.3. Forward studies in relation with cosmic sho
	Nuclear matter		Conclusions
	5.1. Quark nPDF: Drell-Yan in pA and Pbp		Acknowledgments
	5.2. Gluon nPDF		References
	 Isolated photons and photon-jet correlations 		
	5.2.2. Precision quarkonium and heavy-flavour stu	dies	

• Submitted to arXiv on February 2012

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky a, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg c,*

3 SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

Introd	luction
	umbers and features
Nucle	on partonic structure
3.1.	Drell-Yan
3.2.	Gluons in the proton at large x
	3.2.1. Quarkonia
	3.2.2. Jets
	3.2.3. Direct/isolated photons
3.3	Gluons in the deuteron and in the neutron
3.4.	Charm and bottom in the proton
	3.4.1. Open-charm production
	3.4.2. $J/\psi + D$ meson production
	3.4.3. Heavy-quark plus photon production
Spin p	hysics
4.1.	Transverse SSA and DY
4.2.	Quarkonium and heavy-quark transverse SSA
4.3.	Transverse SSA and photon
4.4.	Spin asymmetries with a final state polarization
Nucle	ar matter
5.1.	Quark nPDF: Drell-Yan in pA and Pbp
5.2.	Gluon nPDF
	5.2.1 Isolated photons and photon-jet correlations

Direct hadron production.....

- 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky a, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg c,*

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

5.2.2. Precision quarkonium and heavy-flavour studies......

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

SIPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1.	Intro	duction
2.		umbers and features
3.		on partonic structure
	3.1.	Drell-Yan
	3.2.	Gluons in the proton at large x
		3.2.1. Quarkonia
		3.2.2. Jets
		3.2.3. Direct/isolated photons
	3.3.	Gluons in the deuteron and in the neutron
	3.4.	Charm and bottom in the proton
		3.4.1. Open-charm production
		3.4.2. $J/\psi + D$ meson production
		3.4.3. Heavy-quark plus photon production
4.	Spin p	physics
	4.1.	Transverse SSA and DY
	4.2.	Quarkonium and heavy-quark transverse SSA
	4.3.	Transverse SSA and photon
	4.4.	Spin asymmetries with a final state polarization
5.	Nucle	ar matter
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp
	5.2.	Gluon nPDF
		5.2.1. Isolated photons and photon-jet correlations

- - Hard diffractive reactions.

 Heavy-hadron (diffractive) production at x_F →
- Direct hadron production...

 Further potentialities of a high-energy fixed-target set9.1. D and B physics

 - Conclusions......
- 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky a, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg c,*

3 SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France Contents

1. 2. 3.	Key n Nucle 3.1.	luction untbers and features on partonic structure Drell-Yan. Gluons in the proton at large x 3.2.1. Quarkonia 3.2.2. Jets
	3.3. 3.4.	3.2.3. Direct/isolated photons
4.	Spin p	hysics
	4.1.	Transverse SSA and DY
	4.2.	Quarkonium and heavy-quark transverse SSA
	4.3.	Transverse SSA and photon
	4.4.	Spin asymmetries with a final state polarization
5.	Nucle	ar matter
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp
	5.2.	Gluon nPDF
		5.2.1. Isolated photons and photon-jet correlations

5.2.2. Precision quarkonium and heavy-flavour studies...

6.	Deco	nfinement in heavy-ion collisions
	6.1.	Quarkonium studies
	6.2.	let quenching
	6.3.	Direct photon
	6.4.	Deconfinement and the target rest frame
	6.5.	Nuclear-matter baseline
7.	W an	d Z boson production in pp, pd and pA collisions
	7.1.	First measurements in pA
	7.2.	W /Z production in pp and pd
8.	Exclu	sive, semi-exclusive and backward reactions
	8.1.	Ultra-peripheral collisions
	8.2.	Hard diffractive reactions
	8.3.	Heavy-hadron (diffractive) production at $x_F \rightarrow -$
	8.4.	Very backward physics
	8.5	Direct hadron production
9.	Furth	er potentialities of a high-energy fixed-target set-

Acknowledgments

9.1. D and B physics 9.2. Secondary beams

Forward studies in relation with cosmic shower

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky a, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg c,*

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

Introduction

	muroc	ucuon
	Key n	ımbers and features
i.	Nucle	on partonic structure
	3.1.	Drell-Yan
	3.2	Gluons in the proton at large x
		3.2.1. Quarkonia
		3.2.2. lets
		5.2.2. jets
		3.2.3. Direct/isolated photons
	3.3.	Gluons in the deuteron and in the neutron
	3.4.	Charm and bottom in the proton
		3.4.1. Open-charm production
		3.4.2. $J/\psi + D$ meson production
		3.4.3. Heavy-quark plus photon production
	Spin p	hysics
	4.1.	Transverse SSA and DY
	42	Quarkonium and heavy-quark transverse SSA
	4.3.	Transverse SSA and photon
	4.4	Spin asymmetries with a final state polarization
١.		ar matter
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp
	5.2.	Gluon nPDF
		5.2.1. Isolated photons and photon-jet correlations
		5.2.2. Precision quarkonium and heavy-flavour studies

6.	Decon	finement in heavy-ion collisions
	6.1.	Quarkonium studies
	6.2.	let quenching
	6.3.	Direct photon
	6.4.	Deconfinement and the target rest frame
	6.5.	Nuclear-matter baseline
7.	W and	Z boson production in pp, pd and pA collisions
	7.1.	First measurements in pA
	7.2.	W /Z production in pp and pd
8.	Exclus	ive, semi-exclusive and backward reactions
	8.1.	Ultra-peripheral collisions
	8.2.	Hard diffractive reactions
	8.3.	Heavy-hadron (diffractive) production at $x_F \rightarrow -$
	8.4.	Very backward physics
	8.5	Direct hadron production
9.	Furthe	r potentialities of a high-energy fixed-target set-

Acknowledgments

D and B physics Secondary beams Forward studies in relation with cosmic shower

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
- First dedicated workshop to start to draft an EoI/review/YR August 2015, followed by a couple others with feasibility study publications as outcome

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky a, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg c,*

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Introd	luction
Key n	umbers and features
	on partonic structure
3.1	
3.2	Gluons in the proton at large x
J.2.	3.2.1. Quarkonia
	3.2.2. lets
	3.2.2. Jets
	3.2.3. Direct/isolated photons
3.3.	Gluons in the deuteron and in the neutron
3.4.	Charm and bottom in the proton
	3.4.1. Open-charm production
	3.4.2. $I/\psi + D$ meson production
	3.4.3. Heavy-quark plus photon production
Spin n	hysics
4.1.	
4.2.	
4.3.	
4.4	Spin asymmetries with a final state polarization
Nuclo	ar matter
5.1.	
5.2.	Gluon nPDF
	E 2.1 Irolated photons and photon, introprelations

 5.2.2. Precision quarkonium and heavy-flavour studies. 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

Deconf	inement in heavy-ion collisions
6.1.	Quarkonium studies
6.2.	let quenching
6.3.	Direct photon
6.4.	Deconfinement and the target rest frame
6.5.	Nuclear-matter baseline
W and	Z boson production in pp, pd and pA collision
	First measurements in pA
7.2.	W /Z production in pp and pd
Exclusi	ve, semi-exclusive and backward reactions
8.1.	Ultra-peripheral collisions
8.2.	Hard diffractive reactions
8.3.	Heavy-hadron (diffractive) production at x _F -
8.4.	Very backward physics
	Direct hadron production
Further	potentialities of a high-energy fixed-target s

Acknowledgments

D and B physics Secondary beams

7

Forward studies in relation with cosmic shower

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
 - First dedicated workshop to start to draft an EoI/review/YR August 2015, followed by a couple others with feasibility study publications as outcome
- September 2016: PBC kickoff, ...

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.I. Brodsky a, F. Fleuret b, C. Hadiidakis c, I.P. Lansberg c,*

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Isolated photons and photon-jet correlations. 5.2.2. Precision quarkonium and heavy-flavour studies.....

- Deconfinement in heavy-ion collisions Quarkonium studies let quenching Direct photon Deconfinement and the target rest frame. Nuclear-matter baseline..... 7. W and Z boson production in pp, pd and pA collisions... 7.1. First measurements in nA..... W/Z production in pp and pd 8. Exclusive, semi-exclusive and backward reactions Ultra-peripheral collisions
 - Hard diffractive reactions Heavy-hadron (diffractive) production at $x_F \rightarrow$
 - Very backward physics.... Direct hadron production....
- Further potentialities of a high-energy fixed-target set-D and B physics
 - Secondary beams
 - Forward studies in relation with cosmic shower
 - Acknowledgments
- 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus 4 - 1 4 - 4 - 1 4 - 1 4 - 1 4 - 1

Gluon nPDF

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
 - First dedicated workshop to start to draft an EoI/review/YR August 2015, followed by a couple others with feasibility study publications as outcome
- September 2016: PBC kickoff, ...
- Finally the EoI, which became a review to motivate a full FT LHC program, is out!

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky a, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg c,*

j. Drousky , r. ricuret , c. riadjidakis , j.r . Ediisberg

SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France S IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

ontonte

Introd	duction		
Key numbers and features			
Nucle	on partonic structure		
3.1.	Drell-Yan		
3.2.	Gluons in the proton at large x		
	3.2.1. Quarkonia		
	3.2.2. Jets		
	3.2.3. Direct/isolated photons		
3.3.	Gluons in the deuteron and in the neutron		
3.4.	Charm and bottom in the proton		
	3.4.1. Open-charm production		
	3.4.2. $I/\psi + D$ meson production		
	3.4.3. Heavy-quark plus photon production		
Spin p	Spin physics		
4.1.	Transverse SSA and DY		
4.2.	Quarkonium and heavy-quark transverse SSA		
4.3.	Transverse SSA and photon		
4.4.	Spin asymmetries with a final state polarization		
Nucle	ar matter		
5.1.	Quark nPDF: Drell-Yan in pA and Pbp		
5.2.	Gluon nPDF		

- 6. Deconfinement in heavy-ion collisions
 6.1. Quarkonium studies
 6.2. Jet quenching
 6.3. Direct photon
 6.4. Deconfinement and the target rest frame
 6.5. Deconfinement and the target rest frame
 6.7. Wand Z boson production in pp, pd and p4 collisions.
 7.1. First measurements in ph.
 7.2. W/Z production in pp and pd
 8. Exclusive, semi-exclusive and backward reactions
 8.1. Ultra-peripheral collisions
 8.2. Hand diffractive reactions
 8.3. Heavy-hadron (diffractive production at x_J →
 8.4. Very beckward physics.
- 8.5. Direct hadron production...

 9. Further potentialities of a high-energy fixed-target set9.1. D and B physics

The AFTER@LHC programme

A Fixed-Target Programme at the LHC:

Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis^{a,1}, D. Kikoła^{b,1}, J.P. Lansberg^{a,1,*}, L. Massacrier^{a,1}, M.G. Echevarria^{c,2}, A. Kusina^{d,2}, I. Schienbein^{c,2}, J. Seixas^{f,g,2}, H.S. Shao^{h,2}, A. Signori^{1,2}, B. Trzeciak^{1,2}, S.J. Brodsky^k, G. Cavoto¹, C. Da Silva^m, F. Donatoⁿ, E.G. Ferreiro^{o,p}, I. Hřivnáčová^a, A. Klein^m, A. Kurepin^q, C. Lorcé^e, F. Lyonnet^s, Y. Makdisi¹, S. Porteboeuf^u, C. Quintans^g, A. Rakotozafindrabe^v, P. Robbe^w, W. Scandale^x, N. Topilskaya^q, A. Uras^y, J. Wagner^z, N. Yamanaka^a, Z. Yang^{aa}, A. Zelenski¹

Abstract

We review the context, the motivations and the expected performances of a comprehensive and ambitious fixed-target program using the multi-TeV proton and ion LHC beams. We also provide a detailed account of the different possible technical implementations ranging from an internal wire target to a full dedicated beam line extracted with a bent crystal. The possibilities offered by the use of the ALICE and LHCb detectors in the fixed-target mode are also reviewed.

To be submitted to Physics Reports

The AFTER@LHC HIC programme

2	Mot	otivations 5		
	2.1	The high-x frontier	5	
	2.2	Unraveling the nucleon spin	7	
	2.3	The nuclear matter in new rapidity and energy domains	10	
3	How	v to make fixed-target collisions at the LHC?	12	
	3.1	Overview	12	
	3.2	Relevant LHC parameters and definitions	13	
	3.3	Internal gas target solutions	14	
		3.3.1 SMOG: a feasibility demonstrator	14	
		3.3.2 Gas-jet target	15	
		3.3.3 Storage-cell gas target	17	
	3.4	Internal solid target intercepting the beam halo	18	
	3.5	External/internal target solution with a slow beam extraction using a bent crystal	19	
		3.5.1 Crystal-assisted extraction of the LHC beams	19	
		3.5.2 Unpolarised targets	21	
		3.5.3 Polarised targets	21	
	3.6	Comparison of technologies	23	
		3.6.1 Qualitative comparison of the various technological solutions	23	
		3.6.2 Comparison of the luminosities achieved for AFTER@LHC with the various tech-		
		nological solutions	24	
		3.6.3 Comparison of the polarised-target performances for STSA measurements	26	
4	Dete	ector requirements and expected performances	27	
	4.1	Detector requirements	28	
	4.2	Possible implementations with existing apparatus	29	
			29	
			31	
			34	
		4□ > 4♬ > 4 분 >	∢ ≣ →	

The AFTER@LHC HIC programme

5	Phy	sics Pro	jections	38
	5.1	High-	r frontier for particle and astroparticle physics	38
		5.1.1	Nucleon structure	38
		5.1.2	Nuclear structure	47
		5.1.3	Astroparticle physics	50
	5.2	Spin p	hysics	53
		5.2.1	Quark Sivers effect	54
		5.2.2	Gluon Sivers effect	59
		5.2.3	Quark-induced azimuthal asymmetries	63
		5.2.4	Gluon-induced azimuthal asymmetries	63
		5.2.5	From TMD PDFs to the partonic orbital angular momentum	65
		5.2.6	Ultraperipheral collisions	66
		5.2.7	Accessing the strange quark helicity densities at high x	67
	5.3	Heavy	-ion physics	70
		5.3.1	Precise quarkonium studies in a new rapidity and energy domain	71
		5.3.2	Study of the heavy-quark energy-loss mechanism and their interaction with the sur-	
			rounding nuclear matter	75
		5.3.3	Soft probes at large rapidities - a precise tool to study the bulk properties of the	
			nuclear matter	76
		5.3.4	Looking for collectivity in small systems in a new energy domain	78
		5.3.5	Test of the factorisation of the initial-state effects in AA collisions with Drell-Yan	
			pair production	79
6	Con	clusions		82

The AFTER@LHC programme

5.3	Heavy-ion physics				
	5.3.1	Precise quarkonium studies in a new rapidity and energy domain	71		
	5.3.2	Study of the heavy-quark energy-loss mechanism and their interaction with the sur-			
		rounding nuclear matter	75		
	5.3.3	Soft probes at large rapidities – a precise tool to study the bulk properties of the			
		nuclear matter	76		
	5.3.4	Looking for collectivity in small systems in a new energy domain	78		
	5.3.5	Test of the factorisation of the initial-state effects in AA collisions with Drell-Yan			
		pair production	79		

7 / 21

- Internal gas target (with or without storage cell)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used

7/21

- Internal gas target (with or without storage cell)
 - $\cdot\,$ can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation

[UA9 collaboration]

• the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
- Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - $\cdot \ \ currently \ validated \ by \ the \ LHCb \ collaboration \ with \ SMOG \ [their luminosity \ monitor \ used \ as \ a \ gas \ target]$
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split: similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- → Luminosities with internal gas target or crystal-based solutions are not very different

- Internal gas target (with or without storage cell)
 - can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - $\cdot \ \ currently \ validated \ by \ the \ LHCb \ collaboration \ with \ SMOG \ [their luminosity \ monitor \ used \ as \ a \ gas \ target]$
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
- Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
- · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- → Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation

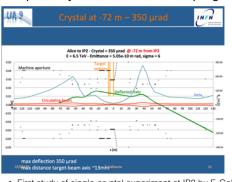
- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - Beam line: provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- → Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)
- → The internal solid target & beam split option: similar possibilities; the latter is cleaner

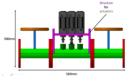
- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
- Beam split: similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- → Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)
- → The internal solid target & beam split option: similar possibilities; the latter is cleaner
- → The gas target is the best for polarised target and satisfactory for heavy-ion studies

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: $3.4 \times 10^{18} \text{ s}^{-1}$ & Pb flux: $3.6 \times 10^{14} \text{ s}^{-1}$
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation

- the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
- Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\,\rightarrow\,$ Luminosities with internal gas target or crystal-based solutions are not very different
- → The beam line option is currently a little too ambitious (this could change with FCC)
- → The internal solid target & beam split option: similar possibilities; the latter is cleaner
- → The gas target is the best for polarised target and satisfactory for heavy-ion studies


$$pp$$
 pA PbA $\mathcal{O}(0.1-10 \text{ fb}^{-1} \text{yr}^{-1})$ $\mathcal{O}(0.1-1 \text{ fb}^{-1} \text{yr}^{-1})$ $\mathcal{O}(1-50 \text{ nb}^{-1} \text{yr}^{-1})$


Solid targets

Conceptual design work for a crystal beam-splitting scenario with inbeam solid targets in ALICE started by the proponents. Compatibility with ALICE collider programme to be studied in detail.

Sketch of the internal solid target

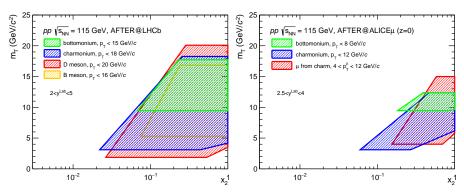
- · movable target with pumping system
- · 2 valves on each side
- possibility to have several target types
- · First study of single-crystal experiment at IP2 by F. Galluccio and W. Scandale
- Integration of a movable internal solid target with ALICE under study by K. Pressard

My suggestion: push in ALICE for a small modification **during the coming shutdown** of the beampipe to allow for tests [planned in LHCb] → urgent !!!

Qualitative comparison

	Internal gas target		Internal solid target	Beam splitting	Beam extraction		
Characteristics	SMOG	Gas Jet	Storage Cell	with beam halo			
Run duration ¹⁴	*	**	**	*	**	* * *	
Parasiticity ¹⁵	***	**	**	*	**	***	
Integrated lumi- nosity ¹⁶	*	**	**	*	**	***	
Absolute lumi- nosity determina- tion ¹⁷	*	**	**	*	**	* * *	
Target versality ¹⁸	**	**	***	**	**	***	
Target polarisa- tion ¹⁹	-	**	**	-	- / ★ ²⁰	*	
Use of existing experiment ²¹	**	*	*	*	*	-	
Civil engineering or R&D ²²	***	**	**	**	**	*	
Cost	***	**	**	**	**	*	
Implementation time	***	**	**	**	**	*	
High x ²³	*	**	***	*	*/**	* * *	
Spin Physics ²⁴	-	***	***	-	-/**	***	
Heavy-Ion ²⁵	*	**	**	*/**	**	***	

Table 8: Qualitative comparison of the various technological solutions.

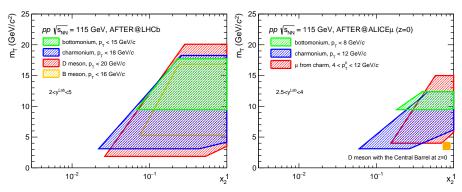

Luminosity comparison

			Beam					
Target				Pb				
			£	Δt	∫£	£	Δt	ſ£
			$[cm^{-2}s^{-1}]$	[s]	[nb ⁻¹]	$[cm^{-2}s^{-1}]$	[s]	[nb ⁻¹]
	SMOG	He, Ne, Ar	5.8 ×10 ²⁹	2.5×10 ⁵	145	7.4 ×10 ²⁵	10 ⁶	0.074
		H [↑]	4.3 ×10 ³⁰	10^{7}	4.3×10 ⁴	5.6 ×10 ²⁶	10 ⁶	0.56
	Gas-Jet	H ₂	3.6 x (10 ³³ -10 ³⁴)	10^{7}	3.6 x (10 ⁷ -10 ⁸)	4.66 x (10 ²⁹ -10 ³⁰)	10 ⁶	466-4660
		D [↑]	4.3 ×10 ³⁰	10^{7}	4.3×10 ⁴	5.6 ×10 ²⁶	10 ⁶	0.56
Intornal and tornat		³ He [↑]	3.6 ×10 ³²	10^{7}	3.6×10^{6}	4.66 ×10 ²⁸	10 ⁶	47
Internal gas target		H [↑]	0.92×10^{33}	10^{7}	9.2×10 ⁶	1.18 ×10 ²⁹	10 ⁶	118
	Storage Cell	H ₂	5.8 ×10 ³³	10^{7}	5.8 ×10 ⁷	7.5 ×10 ²⁹	10 ⁶	750
		D [↑]	1.1 ×10 ³³	10^{7}	1.1×10 ⁷	1.4 ×10 ²⁹	10 ⁶	140
		³ He [↑]	3.7 ×10 ³³	10 ⁷	3.7×10^{7}	4.7 ×10 ²⁹	10 ⁶	474
		Xe	2.34×10 ³²	10 ⁷	2.34×10 ⁶	3.0 ×10 ²⁸	10 ⁶	30
Internal solid	Wire	С	2.8 ×10 ³⁰	10 ⁷	2.8×10 ⁴	5.6 ×10 ²⁶	10 ⁶	0.56
target with	Target	Ti	1.4 ×10 ³⁰	10^{7}	1.4×10^4	2.8 ×10 ²⁶	10 ⁶	0.28
beam halo	(0.5 mm)	W	1.6 ×10 ³⁰	10^{7}	1.6×10 ⁴	3.1 ×10 ²⁶	10 ⁶	0.31
	E1039	NH_3^{\uparrow}	7.2 ×10 ³¹	10 ⁷	7.2×10 ⁵	1.4 ×10 ²⁸	10 ⁶	14
		ND_3^{\uparrow}	7.2 ×10 ³¹	10^{7}	7.2×10 ⁵	1.4 ×10 ²⁸	10 ⁶	14
Beam splitting	Unpolarised	С	2.8 ×10 ³¹	10 ⁷	2.8 ×10 ⁵	5.6 ×10 ²⁷	10 ⁶	5.6
	solid	Ti	1.4 ×10 ³¹	10^{7}	1.4×10 ⁵	2.8 ×10 ²⁷	10 ⁶	2.8
	target (5 mm)	W	1.6 ×10 ³¹	10^{7}	1.6×10 ⁵	3.1 ×10 ²⁷	10 ⁶	3.1
	T1020	NH ₃	7.2 ×10 ³¹	107	7.2×10 ⁵	1.4 ×10 ²⁸	10 ⁶	14
Beam extraction	E1039	ND_3^{\uparrow}	7.2 ×10 ³¹	107	7.2×10 ⁵	1.4 ×10 ²⁸	10 ⁶	14
beam extraction	COMPASS	NH ₃	1.0 ×10 ³³	107	1.0×10 ⁷	2.0 ×10 ²⁹	10 ⁶	200
	COMPASS	butanol ↑	2.7 ×10 ³²	10^{7}	2.7×10 ⁶	5.3 ×10 ²⁸	10 ⁶	53

Part II

Some FoM for Heavy-Ion Studies

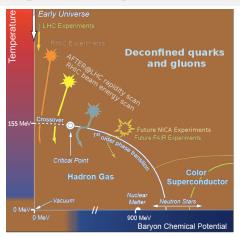
Kinematical coverage

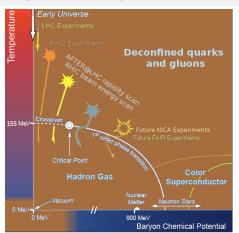


ALICE could cover $\eta \sim 1-2$ for quarkonium into dileptons with one muon in the muon arm and another in the central barrel

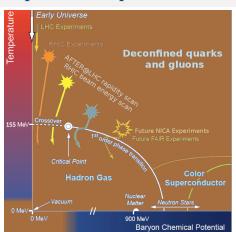
[done for UPCs in the collider mode]

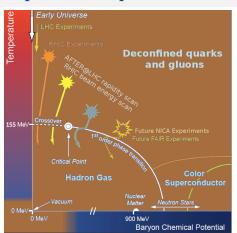
NB: The coverage depends on the target position

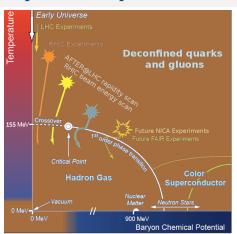

Kinematical coverage

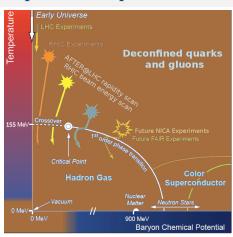

ALICE could cover $\eta \sim 1-2$ for quarkonium into dileptons with one muon in the muon arm and another in the central barrel

[done for UPCs in the collider mode]

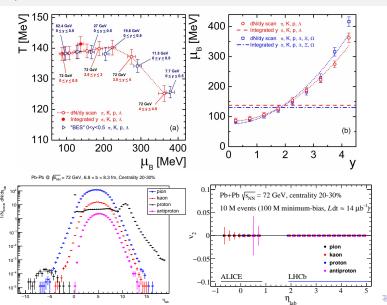

NB: The coverage depends on the target position


 Energy domain between SPS and RHIC


- Energy domain between SPS and RHIC
- Rapidity scan to scan through μ_B & T
 (e.g. ν₂(y) ↔ η/s) wit a good PID
 (LHCb and ALICE)


- Energy domain between SPS and RHIC
- Rapidity scan to scan through μ_B & T
 (e.g. ν₂(y) ↔ η/s) wit a good PID
 (LHCb and ALICE)
- At backward rapidities, the background for μ⁺ μ⁻ is tractable even without absorber
- Handle on more quarkonium states (e.g. $\chi_{c,b}$, η_c) and on open charm and beauty

- Energy domain between SPS and RHIC
- Rapidity scan to scan through μ_B & T
 (e.g. ν₂(y) ↔ η/s) wit a good PID
 (LHCb and ALICE)
- At backward rapidities, the background for $\mu^+\mu^-$ is tractable even without absorber
- Handle on more quarkonium states (e.g. $\chi_{c,b}$, η_c) and on open charm and beauty
- FoMs for χ_{c,b} and η_c to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations



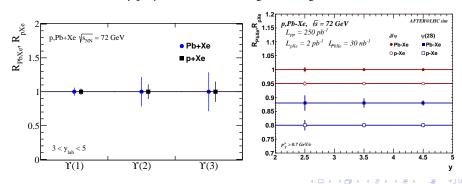
- Energy domain between SPS and RHIC
- Rapidity scan to scan through μ_B & T
 (e.g. ν₂(y) ↔ η/s) wit a good PID
 (LHCb and ALICE)
- At backward rapidities, the background for $\mu^+\mu^-$ is tractable even without absorber
- Handle on more quarkonium states (e.g. $\chi_{c,b}$, η_c) and on open charm and beauty
- FoMs for χ_{c,b} and η_c to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations

Even with 1 billion J/ψ 's, the *direct J/\psi* yield will remain unprecise by 30 %!

Rapidity scan

B.Trzeciak et al.Few-Body Syst (2017) 58:148

B.Trzeciak et al.Few-Body Syst (2017) 58:148

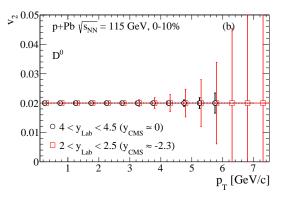

 Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC

B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC
- Clear need for a reliable baseline with *pA* systems

B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC
- Clear need for a reliable baseline with pA systems
- Statistical-uncertainty projections (accounting for background subtraction)

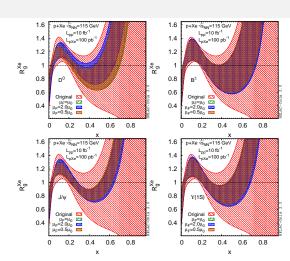


Part III

Some FoM for Cold Nuclear Matter Studies

16 / 21

First look at small systems or new look at Cold Nuclear Matter effects

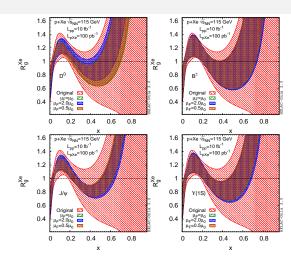

For *pp* collisions, multiplicity studies will be done soon!

• EMC gluon effect totally unknown

- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments

- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments
- First projections are extremely promising

[NB: initial nPDF uncertainties for x > 0.1 are underestimated; simply no data exist there]

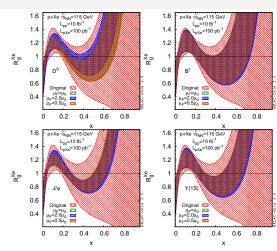


- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments
- First projections are extremely promising

[NB: initial nPDF uncertainties for x > 0.1 are underestimated; simply no data exist there]

Similar studies for the proton PDFs are yet to be done along the lines of the studies carried out for low-x gluon at the LHC PROSA COIL EUR. Phys. J. C75 (2015)

396; R. Gauld, J. Rojo PRL 118 (2017) 072001


- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments
- First projections are extremely promising

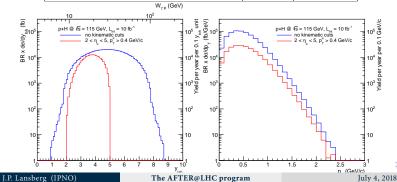
[NB: initial nPDF uncertainties for x > 0.1 are underestimated; simply no data exist there]

• Similar studies for the proton PDFs are yet to be done along the lines of the studies carried out for low-*x* gluon at the LHC PROSA COIL EUL. Phys. J. C75 (2015)

396; R. Gauld, J. Rojo PRL 118 (2017) 072001

 Contrary to nPDF studies bearing on nuclear modification factors, one needs ways to reduce the systematical theory uncertainties

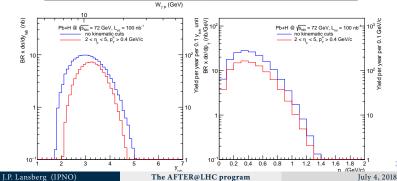
Reward: unique constraints on gluon PDFs at high *x* and low scales


JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

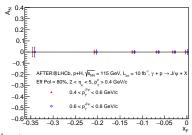
	pН	РbН
Photon-emitter	proton	Lead
$\sigma^{tot}_{J/\psi}$ (pb)	1.18×10^3	276.77×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ and $p_{\rm T}^\mu$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

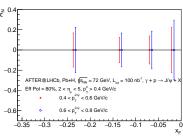
JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

19 / 21


	рН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot} ext{ (pb)}$	1.18×10 ³	276.77×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ and $p_{\rm T}^\mu$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress


19 / 21


	рН	РbН
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot} ext{ (pb)}$	1.18×10 ³	276.77×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ and $p_{\rm T}^\mu$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

	pН	PbH
Photon-emitter	proton	Lead
$\sigma^{tot}_{J/\psi}$ (pb)	1.18×10^3	276.77×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (with LHCb η_μ and $p_{\rm T}^\mu$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

 $A_N^{\gamma p^{\uparrow} \to J/\psi p} \propto \sqrt{t_0 - t} Im(\mathcal{E}_g^* \mathcal{H}_g) \to \text{access to the GPD } E_g \text{ and the gluon OAM}$

July 4, 2018

Part IV

ullet Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

- THREE MAIN THEMES PUSH FOR A FIXED-TARGET PROGRAM AT THE LHC
 S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg, Phys. Rept. 522 (2013) 239
- The high *x* frontier: new probes of the confinement and connections with astroparticles

- THREE MAIN THEMES PUSH FOR A FIXED-TARGET PROGRAM AT THE LHC S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg, Phys.Rept. 522 (2013) 239
- The high *x* frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons

- THREE MAIN THEMES PUSH FOR A FIXED-TARGET PROGRAM AT THE LHC
 S.I. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg, Phys. Rept. 522 (2013) 239
- The high *x* frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:

new energy, new rapidity domain and new probes

21 / 21

- THREE MAIN THEMES PUSH FOR A FIXED-TARGET PROGRAM AT THE LHC
 S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys. Rept. 522 (2013) 239
- The high *x* frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:
 - new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams

- THREE MAIN THEMES PUSH FOR A FIXED-TARGET PROGRAM AT THE LHC
 S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg, Phys. Rept. 522 (2013) 239
- The high *x* frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:
 - new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

- Three main themes push for a fixed-target program at the LHC
 - S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239
- The high *x* frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:
 - new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode
 - which clearly support a full physics program

- Three main themes push for a fixed-target program at the LHC
 - S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239
- The high *x* frontier: new probes of the confinement and connections with astroparticles
- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:
 - new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode
 - which clearly support a full physics program
- Our review is now out and will feed in the European Strategy via the Physics Beyond Collider WG

Part V

Backup slides

Heavy-Ion Physics

- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at $\sqrt{s_{NN}}$ = 115 GeV and Pb+p collisions at $\sqrt{s_{NN}}$ = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

Hadron structure

- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC).
 by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
 By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of ∃_{cc} at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment
 Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546
 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams
 (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al.
 [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Generalities

Physics Opportunities of a Fixed-Target Experiment using the LHC Beams
 By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.