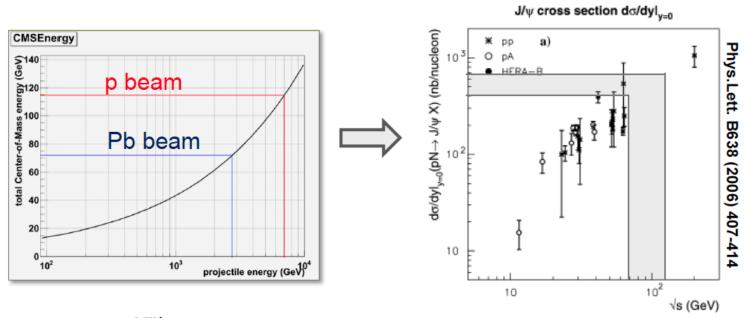
Update on SMOG LHCb simulation

Patrick Robbe, Frédéric Fleuret, 18 June 2014


Setup

- Collisions of Pb beam (2.76 TeV) with Argon gas fixed target in LHCb interaction point:
 - Centre of mass energy of 72 GeV
 - In the CM frame, LHCb acceptance is -1.8 < y_{LHCb}* < 0.2
 - Very roughly, the particle multiplicity in the most central PbAr collisions is ~10 times more than pp collisions.

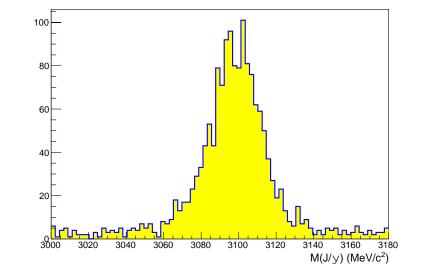
Luminosity

- Target density: 2.10¹²cm⁻² (P=10⁻⁶ mbar, L=80cm)
- Beam intensity:
 - p: 3.55 10¹⁸s⁻¹ (2808 bunches of 1.15 10¹¹ p)
 - Pb: 4.56 10¹⁴s⁻¹ (592 bunches of 7 10⁷ Pb)
- Instantanous luminosity (Target density x bean intensity) – p: 7 $\mu b^{-1} s^{-1}$
 - Pb: 0.9 mb⁻¹ s⁻¹
- Integrated luminosity (1 month, 30%)
 - p: 5.6 pb⁻¹
 - Pb: 0.7 nb⁻¹

Cross sections

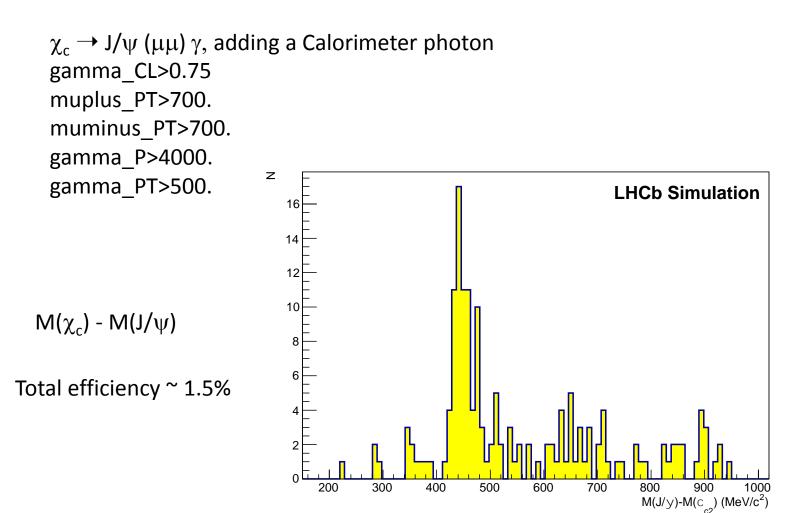
•
$$Br_{\mu^+\mu^{-\times}} \frac{d\sigma^{J/\Psi}}{dy}\Big|_{y=0} (pA \to J/\Psi + X) \sim 5.9\% \times 400 \, nb/\text{nucleon} \sim 24 \, nb/\text{nucleon}$$

	Α	$A \times 5.6 \ pb^{-1} \times 24 \ nb$	$\mathbf{A} imes 208 imes 0.7 \ n\mathbf{b^{-1}} imes 24 \ n\mathbf{b}$
Ne	20	2.7 10 ⁶	0.7 10 ⁵
Ar	40	5.4 10 ⁶	1.4 10 ⁵
Kr	84	11.3 10 ⁶	2.9 10 ⁵
Xe	131	17.6 10 ⁶	4.6 10 ⁵
		р	Pb


F. Fleuret - LLR Ecole polytechnique

PbAr full simulation (signal)

- $\chi_c \rightarrow J/\psi (\mu\mu) \gamma$ signal, from EPOS files, through the full LHCb simulation (Geant4)+ reconstruction chain:
 - Minimum Bias = EPOS
 - Signa chi_c = Pythia6


 $M(J/\psi)$

Total efficiency ~ 20%

Thanks to Frederic Fleuret (LLR Palaiseau, France)


PbAr full simulation (signal)

PbAr Minimum Bias

- Simulated 41900 EPOS MB events with the full LHCb simulation:
 - $-J/\psi$:
 - Expect 56000 signal in 1 month,
 - With significance > 7σ
 - $-\chi_c$:
 - Expect 3000 signal in 3 months,
 - With significance > 3σ
- All numbers limited by MC statistics
- Untuned selection

Centrality

Some J/ ψ seen in the most central collisions, with standard reconstruction: Probably gain with looser tracking Global Event Cuts Here also limited by MC statistics

Conclusions

- Very preliminary studies to refine further !
- J/ ψ reconstruction in PbAr seems « easy », and possible also in most central collisions
- χ_c is more difficult, but does not seem to be impossible
- Next steps:
 - Study effects of tracking GEC
 - Have a look at the PbNe collisions recorded in 2013