

A Fixed-Target Programme at the LHC

J.P. Lansberg

IPN Orsay - Paris-Sud U./Paris Saclay U. -CNRS/IN2P3

Hard-soft correlations in hadronic collisions - GDR QCD, LPC Clermont, 23-25 July 2018

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list

J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 1 / 30

Part I

The AFTER@LHC programme

J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 2 / 30

イロト イポト イヨト イヨ

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

^a SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

- L.	Intro	duction	6.	Deconfinement in heavy-ion collisions
2.	Key n	umbers and features		6.1. Quarkonium studies
3.		on partonic structure		6.2. Jet quenching
	3.1.	Drell-Yan		6.3. Direct photon
	3.2.	Gluons in the proton at large x		6.4. Deconfinement and the target rest frame
		3.2.1. Quarkonia		6.5. Nuclear-matter baseline
		3.2.2. Jets	7.	W and Z boson production in pp, pd and pA collisions
				7.1. First measurements in pA
		3.2.3. Direct/isolated photons		7.2. W /Z production in pp and pd
	3.3.	Gluons in the deuteron and in the neutron	8.	Exclusive, semi-exclusive and backward reactions
	3.4.	Charm and bottom in the proton		8.1. Ultra-peripheral collisions
		3.4.1. Open-charm production		8.2. Hard diffractive reactions
		3.4.2. J/ψ + D meson production		8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$
		3.4.3. Heavy-quark plus photon production		8.4. Very backward physics
4.	Spin p	physics		8.5. Direct hadron production
	4.1.	Transverse SSA and DY	9.	Further potentialities of a high-energy fixed-target set-
	4.2.	Quarkonium and heavy-quark transverse SSA		9.1. D and B physics
	4.3.	Transverse SSA and photon		9.2. Secondary beams
	4.4.	Spin asymmetries with a final state polarization		9.3. Forward studies in relation with cosmic shower
5.	Nuclear matter			Conclusions.
	5.1. Quark nPDF: Drell-Yan in pA and Pbp			Acknowledgments
	5.2. Gluon nPDF.			References
		5.2.1. Isolated photons and photon-jet correlations		
		5.2.2. Precision quarkonium and heavy-flavour studies		
	5.3.	Color filtering, energy loss, Sudakov suppression and hadron brea		

イロト イヨト イヨト イヨト

The AFTER@LHC program

• Submitted to arXiv on February 2012

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

³ SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1.			5.	Deconfinement in heavy-ion collisions
2.	Key n	umbers and features		6.1. Quarkonium studies
3.				6.2. Jet quenching
	3.1.	Drell-Yan		6.3. Direct photon
	3.2.	Gluons in the proton at large x		6.4. Deconfinement and the target rest frame
		3.2.1. Quarkonia		6.5. Nuclear-matter baseline
		3.2.2. Jets	7.	W and Z boson production in pp, pd and pA collisions
				7.1. First measurements in pA
		3.2.3. Direct/isolated photons		7.2. W/Z production in pp and pd
	3.3.	Gluons in the deuteron and in the neutron	R	Exclusive, semi-exclusive and backward reactions
	3.4.	Charm and bottom in the proton		8.1. Ultra-peripheral collisions
		3.4.1. Open-charm production		8.2. Hard diffractive reactions
		3.4.2. J/ψ + D meson production		8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow -$
		3.4.3. Heavy-quark plus photon production		8.4. Very backward physics
4.	Spin p	physics		8.5. Direct hadron production
	4.1.	Transverse SSA and DY	9.	Further potentialities of a high-energy fixed-target set-
	4.2.	Quarkonium and heavy-quark transverse SSA		9.1. D and B physics
	4.3.	Transverse SSA and photon		9.2. Secondary beams
	4.4.	Spin asymmetries with a final state polarization		9.3 Forward studies in relation with cosmic shower
5.	Nuclear matter 10			Conclusions
5.	5.1. Quark nPDF: Drell-Yan in pA and Pbp			Acknowledgments
	5.2.	Gluon nPDF.		References
	J.4.	5.2.1. Isolated photons and photon-jet correlations		References
		5.2.1. Isolated photons and photon-jet correlations 5.2.2. Precision quarkonium and heavy-flavour studies		
	5.0			
	5.3.	Color filtering, energy loss, Sudakov suppression and hadron break-	upi	n me nucleus

イロト イヨト イヨト イヨト

J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 3 / 30

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned

122332	Contents lists available at SciVerse ScienceDirect	PRVSICS REPORTS
	Physics Reports	
ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

³ SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1.	Intro	luction	Deconfinement in heavy-ion collisions		
2.	Key n	umbers and features		6.1. Quarkonium studies	
3.	Nucle	on partonic structure		6.2. Jet quenching	
	3.1.	Drell-Yan		6.3. Direct photon	
	3.2.	Gluons in the proton at large x		6.4. Deconfinement and the target rest frame	
		3.2.1. Quarkonia		6.5. Nuclear-matter baseline	
		3.2.2. Jets	7.	W and Z boson production in pp, pd and pA collisions	
				7.1. First measurements in pA	
		3.2.3. Direct/isolated photons		7.2. W/Z production in pp and pd	
	3.3.	Gluons in the deuteron and in the neutron	8.	Exclusive, semi-exclusive and backward reactions	
	3.4.	Charm and bottom in the proton		8.1. Ultra-peripheral collisions	
		3.4.1. Open-charm production		8.2. Hard diffractive reactions	
		3.4.2. J/ψ + D meson production		 Heavy-hadron (diffractive) production at x_F → 	
		3.4.3. Heavy-quark plus photon production		8.4. Very backward physics	
4.	Spin physics			8.5. Direct hadron production	
	4.1.	Transverse SSA and DY	9.	Further potentialities of a high-energy fixed-target set-	
	4.2.	Quarkonium and heavy-quark transverse SSA		9.1. D and B physics	
	4.3.	Transverse SSA and photon		9.2. Secondary beams	
	4.4.	asymmetries with a final state polarization		9.3. Forward studies in relation with cosmic shower	
5.	Nuclear matter			Conclusions	
	5.1. Quark nPDF: Drell-Yan in pA and Pbp			Acknowledgments	
	5.2.	Gluon nPDF		References	
		5.2.1. Isolated photons and photon-jet correlations			
5.2.2. Precision guarkonium and heavy-flavour studies					
	5.3.	Color filtering, energy loss, Sudakov suppression and hadron brea	ik-up	in the nucleus	

イロト イヨト イヨト イヨト

The AFTER@LHC program

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

³ SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1.	Introduction	6.	Deconfinement in heavy-ion collisions
2.	Key numbers and features		6.1. Quarkonium studies
3.	Nucleon partonic structure		6.2. Jet quenching
	3.1. Drell-Yan		6.3. Direct photon
	3.2. Gluons in the proton at large x		6.4. Deconfinement and the target rest frame
	3.2.1. Quarkonia		6.5. Nuclear-matter baseline
	3.2.2. Jets	7.	W and Z boson production in pp, pd and pA collisions
			7.1. First measurements in pA
	3.2.3. Direct/isolated photons		7.2. W/Z production in pp and pd
	3.3. Gluons in the deuteron and in the neutron	8	Exclusive, semi-exclusive and backward reactions
	3.4. Charm and bottom in the proton	0.	8.1. Ultra-peripheral collisions
	3.4.1. Open-charm production		8.2. Hard diffractive reactions
	3.4.2. $J/\psi + D$ meson production		8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow -$
	3.4.3. Heavy-quark plus photon production		8.4. Very backward physics
4.	Spin physics		8.5. Direct hadron production
	4.1. Transverse SSA and DY	9.	Further potentialities of a high-energy fixed-target set-
	4.2. Quarkonium and heavy-quark transverse SSA	9.	9.1. D and B physics
	4.3. Transverse SSA and photon		
	4.4. Spin asymmetries with a final state polarization		
5.			
э.	Nuclear matter		Conclusions
			Acknowledgments
			References
	5.2.1. Isolated photons and photon-jet correlations		
	5.2.2. Precision quarkonium and heavy-flavour stu		
	5.3. Color filtering, energy loss, Sudakov suppression and I	hadron break-up	in the nucleus

J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 3 / 30

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

³ SLAC National Accelerator Laboratory, Stanford University, Menio Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

Introduction. 6 Deconfinement in heavy-ion collisions 2 Key numbers and features..... Quarkonium studies 61 3. Nucleon partonic structure let quenching 3.1. Drell-Yan..... Direct photon 6.3. 3.2. Gluons in the proton at large x..... 64 Deconfinement and the target rest frame..... 3.2.1. Quarkonia..... Nuclear-matter baseline..... 65 3.2.2. lets 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd 7.2. 3.3. Gluons in the deuteron and in the neutron...... 8. Exclusive, semi-exclusive and backward reactions 3.4. Charm and bottom in the proton...... Ultra-peripheral collisions 81 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2. $1/\psi + D$ meson production 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Verv backward physics..... 4 Spin physics 85 Direct hadron production..... 4.1. Transverse SSA and DY Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-guark transverse SSA 9.1. D and B physics 4.3. Transverse SSA and photon..... 9.2 Secondary beams 4.4. Spin asymmetries with a final state polarization 03 Forward studies in relation with cosmic shower Nuclear matter Conclusions 5.1. Ouark nPDF: Drell-Yan in pA and Pbp..... Acknowledgments 5.2. Gluon nPDF..... References.... 5.2.1. Isolated photons and photon-jet correlations..... 5.2.2. Precision guarkonium and heavy-flavour studies 5.3. Color filtering, energy loss, Sudakoy suppression and hadron break-up in the nucleus

イロト イヨト イヨト イヨト

The AFTER@LHC program

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
- First dedicated workshop to start to draft an EoI/review/YR August 2015, followed by a couple others with feasibility study publications as outcome

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

³ SLAC National Accelerator Laboratory, Stanford University, Menio Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

Introduction 6. Deconfinement in heavy-ion collisions Key numbers and features..... Quarkonium studies 61 Nucleon partonic structure let quenching 3.1. Drell-Yan Direct photon 6.3. 3.2. Gluons in the proton at large x..... 64 Deconfinement and the target rest frame...... 3.2.1. Quarkonia..... Nuclear-matter baseline...... lets 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd 7.2. 3.3. Gluons in the deuteron and in the neutron...... 8. Exclusive, semi-exclusive and backward reactions 3.4. Charm and bottom in the proton...... Ultra-peripheral collisions 81 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2. $1/\psi + D$ meson production 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Very backward physics 4 Spin physics 85 Direct hadron production..... Transverse SSA and DY..... 41 Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-quark transverse SSA 9.1. D and B physics Transverse SSA and photon..... 43 9.2 Secondary beams 4.4. Spin asymmetries with a final state polarization 03 Forward studies in relation with cosmic shower Nuclear matter 10 Conclusions 5.1. Ouark nPDF: Drell-Yan in pA and Pbp Acknowledgments 5.2. Gluon nPDF.... References. 5.2.1. Isolated photons and photon-jet correlations..

イロト イヨト イヨト イヨト

- 5.2.2. Precision guarkonium and heavy-flavour studies
- 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

The AFTER@LHC program

July 25, 2018 3 / 30

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
- First dedicated workshop to start to draft an EoI/review/YR August 2015, followed by a couple others with feasibility study publications as outcome
- September 2016: PBC kickoff, ...

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

³ SLAC National Accelerator Laboratory, Stanford University, Menio Park, CA 94025, USA ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

Introduction 6. Deconfinement in heavy-ion collisions Key numbers and features..... Quarkonium studies 61 Nucleon partonic structure let quenching 3.1 Drell-Yan..... Direct photon 3.2. Gluons in the proton at large x..... 64 Deconfinement and the target rest frame...... 3.2.1. Quarkonia..... Nuclear-matter baseline...... lets..... 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd 7.2. 3.3. Gluons in the deuteron and in the neutron...... Exclusive, semi-exclusive and backward reactions 3.4. Charm and bottom in the proton...... 8.1 Ultra-peripheral collisions 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2. $1/\psi + D$ meson production 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Very backward physics 4. Spin physics 85 Direct hadron production..... Transverse SSA and DY..... 4.1 Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-quark transverse SSA 9.1. D and B physics Transverse SSA and photon..... 43 9.2. Secondary beams 44 Spin asymmetries with a final state polarization Forward studies in relation with cosmic shower Nuclear matter10 Conclusions Ouark nPDF: Drell-Yan in pA and Pbp Acknowledgments 5.2. Gluon nPDF... References. Isolated photons and photon-jet correlations.

イロト イヨト イヨト イヨト

- 5.2.2. Precision quarkonium and heavy-flavour studies
- 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

The AFTER@LHC program

July 25, 2018 3 / 30

- Submitted to arXiv on February 2012
- At the time, the bent crystal solution was the only one mentioned
- All the subjects (even astroparticles) already considered
- First real discussions about SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
- First dedicated workshop to start to draft an EoI/review/YR August 2015, followed by a couple others with feasibility study publications as outcome
- September 2016: PBC kickoff, ...
- Finally the EoI, which became a review to motivate a full FT LHC program, is out !

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

^a SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France 6 IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

Introduction..... 6. Deconfinement in heavy-ion collisions 2. Key numbers and features. Quarkonium studies Nucleon partonic structure let quenching 3.1 Drell-Yan..... Direct photon 3.2. Gluons in the proton at large x..... 64 Deconfinement and the target rest frame...... 3.2.1. Quarkonia..... Nuclear-matter baseline..... lets..... 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd 7.2. 3.3. Gluons in the deuteron and in the neutron...... Exclusive, semi-exclusive and backward reactions 3.4. Charm and bottom in the proton...... 8.1 Ultra-peripheral collisions 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2. $1/\psi + D$ meson production 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Very backward physics 4. Spin physics 85 Direct hadron production..... Transverse SSA and DY..... 4.1 Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-quark transverse SSA 9.1. D and B physics Transverse SSA and photon..... 43 9.2. Secondary beams 44 Spin asymmetries with a final state polarization Forward studies in relation with cosmic shower Nuclear matter10 Conclusions Ouark nPDF: Drell-Yan in pA and Pbp Acknowledgments 5.2. Gluon nPDF.. References. Isolated photons and photon-jet correlations. Precision guarkonium and heavy-flavour studies

イロト イヨト イヨト イヨト

- 5.3. Color filtering, energy loss, Sudakoy suppression and hadron break-up in the nucleus

J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 3/30

The AFTER@LHC programme

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis^{a,1}, D. Kikoła^{b,1}, J.P. Lansberg^{a,1,*}, L. Massacrier^{a,1}, M.G. Echevarria^{c,2}, A. Kusina^{d,2},

I. Schienbeine^{,2}, J. Seixas^{f,g,2}, H.S. Shao^{h,2}, A. Signori^{i,2}, B. Trzeciak^{j,2}, S.J. Brodsky^k, G. Cavoto¹,

C. Da Silva^m, F. Donatoⁿ, E.G. Ferreiro^{o,p}, I. Hřivnáčová^a, A. Klein^m, A. Kurepin^q, C. Lorcé^r, F. Lyonnet^s,

Y. Makdisi^t, S. Porteboeuf^u, C. Quintans^g, A. Rakotozafindrabe^v, P. Robbe^w, W. Scandale^x,

N. Topilskaya^q, A. Uras^y, J. Wagner^z, N. Yamanaka^a, Z. Yang^{aa}, A. Zelenski^t

Abstract

We review the context, the motivations and the expected performances of a comprehensive and ambitious fixed-target program using the multi-TeV proton and ion LHC beams. We also provide a detailed account of the different possible technical implementations ranging from an internal wire target to a full dedicated beam line extracted with a bent crystal. The possibilities offered by the use of the ALICE and LHCb detectors in the fixed-target mode are also reviewed.

The AFTER@LHC program

The AFTER@LHC HIC programme

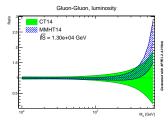
2	Mot	tivations 5	
	2.1	The high- <i>x</i> frontier	
	2.2	Unraveling the nucleon spin	
	2.3	The nuclear matter in new rapidity and energy domains	
3	How	w to make fixed-target collisions at the LHC? 12	
	3.1	Overview	
	3.2	Relevant LHC parameters and definitions	
	3.3	Internal gas target solutions	
		3.3.1 SMOG: a feasibility demonstrator	
		3.3.2 Gas-iet target	
		3.3.3 Storage-cell gas target	
	3.4		
	3.5	External/internal target solution with a slow beam extraction using a bent crystal 19	
		3.5.1 Crystal-assisted extraction of the LHC beams	
		3.5.2 Unpolarised targets	
		3.5.3 Polarised targets	
	3.6	Comparison of technologies	
		3.6.1 Qualitative comparison of the various technological solutions	
		3.6.2 Comparison of the luminosities achieved for AFTER@LHC with the various tech-	
		nological solutions	
		3.6.3 Comparison of the polarised-target performances for STSA measurements 26	
4	Dete	ector requirements and expected performances 27	
	4.1	Detector requirements	
	4.2		
		4.2.1 ALICE as a fixed-target experiment	
		4.2.2 LHCb as a fixed-target experiment	
		4.2.3 Comparison of possible implementations	
		· · · · · · · · · · · · · · · · · · ·	= .

The AFTER@LHC HIC programme

5	Phy	Physics Projections							
	5.1	High-2	x frontier for particle and astroparticle physics	38					
		5.1.1	Nucleon structure	38					
		5.1.2	Nuclear structure	47					
		5.1.3	Astroparticle physics	50					
	5.2	Spin p	hysics	53					
		5.2.1	Quark Sivers effect	54					
		5.2.2	Gluon Sivers effect	59					
		5.2.3	Quark-induced azimuthal asymmetries	63					
		5.2.4	Gluon-induced azimuthal asymmetries	63					
		5.2.5	From TMD PDFs to the partonic orbital angular momentum	65					
		5.2.6	Ultraperipheral collisions	66					
		5.2.7	Accessing the strange quark helicity densities at high x	67					
	5.3	3 Heavy-ion physics							
		5.3.1	Precise quarkonium studies in a new rapidity and energy domain	71					
		5.3.2	Study of the heavy-quark energy-loss mechanism and their interaction with the sur-						
			rounding nuclear matter	75					
		5.3.3	Soft probes at large rapidities - a precise tool to study the bulk properties of the						
			nuclear matter	76					
		5.3.4	Looking for collectivity in small systems in a new energy domain	78					
		5.3.5	Test of the factorisation of the initial-state effects in AA collisions with Drell-Yan						
			pair production	79					
6	Con	clusions	5	82					

イロト イヨト イヨト イヨト

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

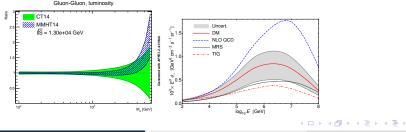

イロト イヨト イヨト イヨト

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

Image: Image:

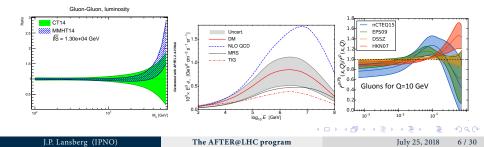


Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

· Proton charm content important to high-energy neutrino & cosmic-rays physics

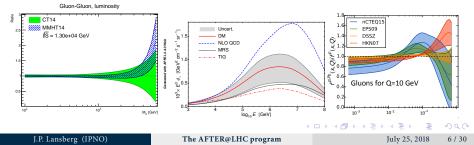

J.P. Lansberg (IPNO)

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions

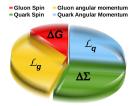

Advance our understanding of the high-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

• Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search for and study rare proton/deuteron fluctuations

where a single gluon carries most of its momentum


Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

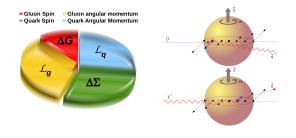
Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

• Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

[First hint by COMPASS that $\mathcal{L}_g \neq 0$]

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons


Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

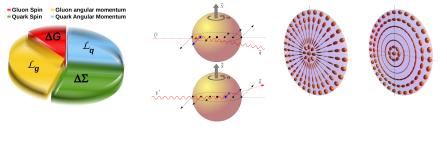
Test of the QCD factorisation framework

[First hint by COMPASS that $\mathcal{L}_g \neq 0$]

[beyond the DY A_N sign change]

Advance our understanding dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum $\mathcal{L}_{g;q}$:

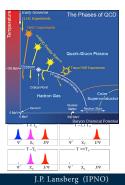

 $\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q \qquad [$

[First hint by COMPASS that $\mathcal{L}_g \neq 0$] [beyond the DY A_N sign change]

Test of the QCD factorisation framework

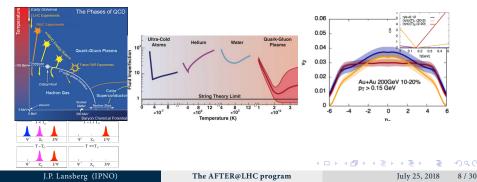
Determination of the linearly polarised gluons in unpolarised protons

[once measured, allows for spin physics without polarised proton, e.g. at the LHC]

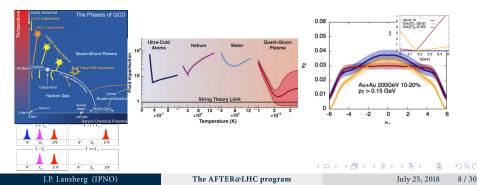


Heavy-ion collisions towards large rapidities

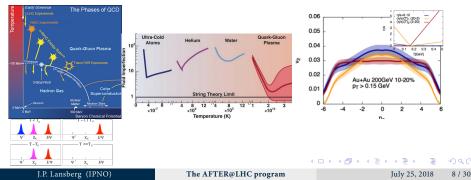
イロト イヨト イヨト イヨト


Heavy-ion collisions towards large rapidities

• A complete set of heavy-flavour studies between SPS and RHIC energies [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, Y, D, J/\psi \leftarrow b + pairs)$]


Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
 - [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation


Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies
 - [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- · Explore the longitudinal expansion of QGP formation

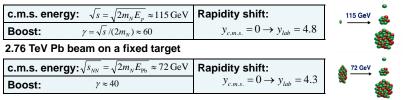
Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies
 - [needed to calibrate the quarkonium thermometer $(J/\psi, \psi', \chi_c, \Upsilon, D, J/\psi \leftarrow b + \text{pairs})$]
- Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation
- · Explore the longitudinal expansion of QGP formation
- Test the factorisation of cold nuclear effects from p + A to A + B collisions

Part III

Possible Implementations and Luminosities

J.P. Lansberg (IPNO)


The AFTER@LHC program

July 25, 2018 9 / 30

A B > A B > A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

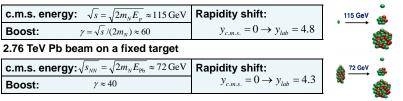
Energy range

7 TeV proton beam on a fixed target

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Energy range

7 TeV proton beam on a fixed target



Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

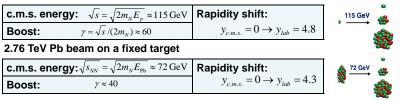
• □ ▶ • • □ ▶ • □ ▶ • □ ▶

Energy range

7 TeV proton beam on a fixed target

Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost :


[particularly relevant for high energy beams]

イロト イポト イヨト イヨト

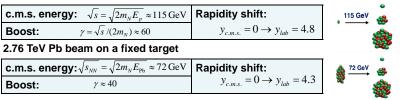
• LHCb and the ALICE muon arm become backward detectors $[y_{c.m.s.} < 0]$

Energy range

7 TeV proton beam on a fixed target

Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

Effect of boost :


[particularly relevant for high energy beams]

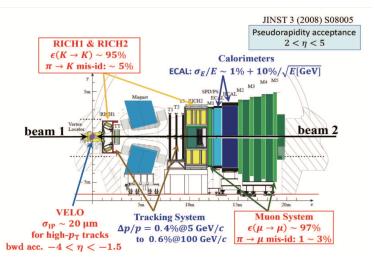
イロト イヨト イヨト イヨト

- LHCb and the ALICE muon arm become backward detectors $[y_{c.m.s.} < 0]$
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$

Energy range

7 TeV proton beam on a fixed target

Such \sqrt{s} allow, for the first time, for systematic studies of *W* boson, bottomonia, p_T spectra, associated production, ..., in the fixed target mode

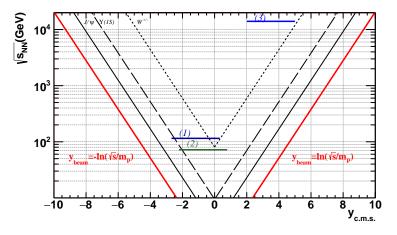

Effect of boost :

[particularly relevant for high energy beams]

- LHCb and the ALICE muon arm become backward detectors $[y_{c.m.s.} < 0]$
- With the reduced \sqrt{s} , their acceptance for physics grows and nearly covers half of the backward region for most probes $[-1 < x_F < 0]$

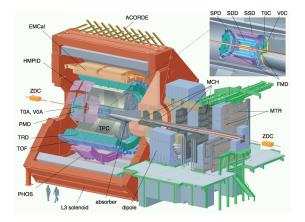
• Allows for backward physics up to high $x_{target} (\equiv x_2)$ [uncharted for proton-nucleus; most relevant for p-p[†], with large $x^{\frac{1}{2}}$] [UPL Lansberg (IPNO)] The AFTER@LHC program July 25, 2018 10/30

LHCb acceptance for various colliding modes

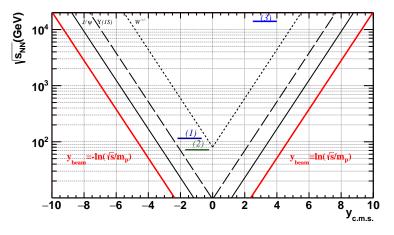


J.P. Lansberg (IPNO)

July 25, 2018 11 / 30


(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

LHCb acceptance for various colliding modes


- (1) Fixed-target using p beam, $E_p = 7$ TeV
- (2) Fixed-target using Pb beam, $E_{Pb} = 2.76$ A.TeV
- (3) Collider using p beams, $E_p = 7$ TeV

ALICE muon acceptance for various colliding modes

- Central barrel: $-0.9 < \eta < 0.9$
- Muon spectrometer acceptance: $2.5 < \eta < 4$

ALICE muon acceptance for various colliding modes

- (1) Fixed-target using p beam, $E_p = 7$ TeV
- (2) Fixed-target using Pb beam, $E_{Pb} = 2.76$ A.TeV
- (3) Collider using p beams, $E_p = 7$ TeV

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: *p* flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - · A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA *p* beam and by STAR at RHIC]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]
- Bent crystal option: beam line vs split
 - · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
 - $\cdot\,\,$ the LHC beam halo is recycled on dense target: proton flux: $5\times10^8~s^{-1}\,\,$ & lead flux: $2\times10^5~s^{-1}\,\,$

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot\,\,$ the LHC beam halo is recycled on dense target: proton flux: 5 $\times\,10^8~s^{-1}\,\,$ & lead flux: 2 $\times\,10^5~s^{-1}\,\,$
 - $\cdot~$ Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- \cdot the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - $\cdot~$ Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- \rightarrow Luminosities with internal gas target or crystal-based solutions are not very different

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - · currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- \cdot the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- \rightarrow Luminosities with internal gas target or crystal-based solutions are not very different
- \rightarrow The beam line option is currently a little too ambitious (this could change with FCC)

イロト イ部ト イヨト イヨト 二日

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- \cdot the LHC beam halo is recycled on dense target: proton flux: $5 \times 10^8 \text{ s}^{-1}$ & lead flux: $2 \times 10^5 \text{ s}^{-1}$
 - $\cdot~$ Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- \rightarrow Luminosities with internal gas target or crystal-based solutions are not very different
- \rightarrow The beam line option is currently a little too ambitious (this could change with FCC)
- \rightarrow The internal solid target & beam split option: similar possibilities; the latter is cleaner

イロト イ部ト イヨト イヨト 二日

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

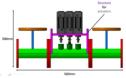
- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot~$ the LHC beam halo is recycled on dense target: proton flux: 5 × 10⁸ s⁻¹ $\,$ & lead flux: 2 × 10⁵ s⁻¹ $\,$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow~$ Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow~$ The beam line option is currently a little too ambitious (this could change with FCC)
- $\rightarrow~$ The internal solid target & beam split option: similar possibilities; the latter is cleaner
- \rightarrow The gas target is the best for polarised target and satisfactory for heavy-ion studies

- Internal gas target (with or without storage cell)
 - · can be installed in one of the existing LHC caverns, and coupled to existing experiments
 - currently validated by the LHCb collaboration with SMOG [their luminosity monitor used as a gas target]
 - uses the high LHC particle current: p flux: 3.4×10^{18} s⁻¹ & Pb flux: 3.6×10^{14} s⁻¹
 - Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
 - A system like the polarised H-jet polarimeter at RHIC-BNL (no storage cell) may also be used
- Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• Bent crystal option: beam line vs split

- · crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- $\cdot~$ the LHC beam halo is recycled on dense target: proton flux: 5 × 10⁸ s⁻¹ $\,$ & lead flux: 2 × 10⁵ s⁻¹ $\,$
 - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
 - · Beam split : similar fluxes; less/no civil engineering; might be coupled to an existing experiment
- $\rightarrow~$ Luminosities with internal gas target or crystal-based solutions are not very different
- \rightarrow The beam line option is currently a little too ambitious (this could change with FCC)
- \rightarrow The internal solid target & beam split option: similar possibilities; the latter is cleaner
- \rightarrow The gas target is the best for polarised target and satisfactory for heavy-ion studies

$$\begin{array}{ccc} pp & pA & PbA \\ \mathcal{O}(0.1 - 10 \text{ fb}^{-1}\text{yr}^{-1}) & \mathcal{O}(0.1 - 1 \text{ fb}^{-1}\text{yr}^{-1}) & \mathcal{O}(1 - 50 \text{ nb}^{-1}\text{yr}^{-1}) \end{array}$$


Solid targets

Conceptual design work for a crystal beam-splitting scenario with inbeam solid targets in ALICE started by the proponents. Compatibility with ALICE collider programme to be studied in detail.

اس Crystal at -72 m – 350 µrad	
	SI
Alice to iP2 - Crystal = 350 µrad <mark>⊕ -72 m from iP2</mark> E = 6.5 TeV - Emittance = 5.05e-10 m rad, sigma = 6	
005 Target 004 Machine aperture options	300.00
	236.00
est Circulating berm	10000
	-100.00
	-200.00
4.65 s(m)	-305.00
max deflection 350 µrad ^{22/7} ññäx distance target-beam axis ~13mn ^{Galaxco}	11

Sketch of the internal solid target

- · movable target with pumping system
- · 2 valves on each side
- possibility to have several target types
- · First study of single-crystal experiment at IP2 by F. Galluccio and W. Scandale
- · Integration of a movable internal solid target with ALICE under study by K. Pressard

Qualitative comparison

	Internal gas target			Internal solid target	Beam splitting	Beam extraction	
Characteristics	aracteristics SMOG Gas Jet Stor		Storage Cell	with beam halo			
Run duration ¹⁴	*	**	**	*	**	* * *	
Parasiticity ¹⁵	***	**	**	*	**	* * *	
Integrated lumi- nosity ¹⁶	*	**	**	*	**	* * *	
Absolute lumi- nosity determina- tion ¹⁷	*	**	**	*	**	* * *	
Target versality ¹⁸	**	**	***	**	**	* * *	
Target polarisa- tion ¹⁹	-	**	**	-	- / * ²⁰	*	
Use of existing experiment ²¹	**	*	*	*	*	-	
Civil engineering or R&D ²²	***	**	**	**	**	*	
Cost	* * *	**	**	**	**	*	
Implementation time	* * *	**	**	**	**	*	
High x ²³	*	**	***	*	*/ * *	* * *	
Spin Physics ²⁴	-	* * *	***	-	-/**	* * *	
Heavy-Ion ²⁵	*	**	**	*/ * *	**	* * *	

Table 8: Qualitative comparison of the various technological solutions.

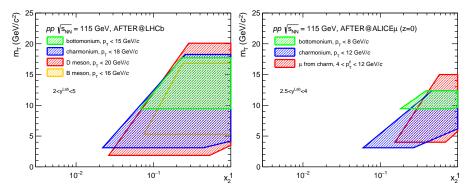
Luminosity comparison

			Beam					
Target			р			Pb		
			L	Δt	∫L	L	Δt	∫£
		$[cm^{-2}s^{-1}]$	[s]	[nb ⁻¹]	$[cm^{-2}s^{-1}]$	[s]	$[nb^{-1}]$	
Internal gas target -	SMOG	He, Ne, Ar	5.8 ×10 ²⁹	2.5×10^5	145	7.4 ×10 ²⁵	10 ⁶	0.074
		H^{\uparrow}	4.3 ×10 ³⁰	107	4.3×10^{4}	5.6 ×10 ²⁶	10 ⁶	0.56
	Gas-Jet	H_2	$3.6 \ge (10^{33} - 10^{34})$	107	$3.6 \ge (10^7 - 10^8)$	$4.66 \ge (10^{29} - 10^{30})$	106	466-4660
		\mathbf{D}^{\uparrow}	4.3 ×10 ³⁰	107	4.3×10^{4}	5.6×10^{26}	10^{6}	0.56
		³ He [↑]	3.6 ×10 ³²	107	3.6×10^{6}	4.66×10^{28}	10^{6}	47
	Storage Cell	H^{\uparrow}	0.92×10^{33}	107	9.2×10^{6}	1.18 ×10 ²⁹	106	118
		H_2	5.8 ×10 ³³	107	5.8×10^{7}	7.5×10^{29}	10^{6}	750
		\mathbf{D}^{\uparrow}	1.1 ×10 ³³	107	1.1×10^{7}	1.4×10^{29}	106	140
		³ He [↑]	3.7 ×10 ³³	107	3.7×10^{7}	4.7×10^{29}	10^{6}	474
		Xe	2.34×10^{32}	107	2.34×10^{6}	3.0×10^{28}	10^{6}	30
Internal solid	Wire	С	2.8 ×10 ³⁰	107	2.8×10^{4}	5.6 ×10 ²⁶	106	0.56
target with	Target	Ti	1.4×10^{30}	107	1.4×10^4	2.8×10^{26}	10^{6}	0.28
beam halo	(0.5 mm)	W	1.6 ×10 ³⁰	107	1.6×10^4	3.1×10^{26}	10^{6}	0.31
Beam splitting	E1039	NH_3^{\uparrow}	7.2 ×10 ³¹	107	7.2×10^{5}	1.4×10^{28}	10 ⁶	14
		ND_3^{\uparrow}	7.2×10^{31}	107	7.2×10^{5}	1.4×10^{28}	10^{6}	14
	Unpolarised	С	2.8 ×10 ³¹	107	2.8×10^{5}	5.6 ×10 ²⁷	106	5.6
	solid	Ti	1.4×10^{31}	107	1.4×10^{5}	2.8×10^{27}	10^{6}	2.8
	target (5 mm)	W	1.6×10^{31}	107	1.6×10^{5}	3.1×10^{27}	10^{6}	3.1
Beam extraction	E1039	NH_3^{\uparrow}	7.2 ×10 ³¹	107	7.2×10^{5}	1.4 ×10 ²⁸	106	14
		ND_3^{\uparrow}	7.2×10^{31}	107	7.2×10^5	1.4×10^{28}	10^{6}	14
	COMPASS	NH_3^{\uparrow}	1.0 ×10 ³³	107	1.0×10^{7}	2.0×10^{29}	106	200
		butanol [↑]	2.7 ×10 ³²	107	2.7×10^{6}	5.3 ×10 ²⁸	10^{6}	53

J.P. Lansberg (IPNO)

July 25, 2018 18 / 30

Part IV


Some FoM for Heavy-Ion Studies

J.P. Lansberg (IPNO)

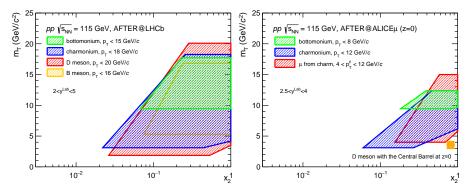
The AFTER@LHC program

July 25, 2018 19 / 30

Kinematical coverage

ALICE could cover $\eta \sim 1-2$ for quarkonium into dileptons with one muon in the muon arm and another in the central barrel

[done for UPCs in the collider mode]


NB: The coverage depends on the target position

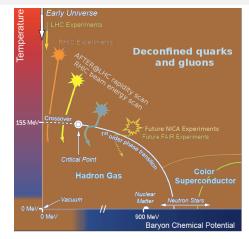
J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 20 / 30

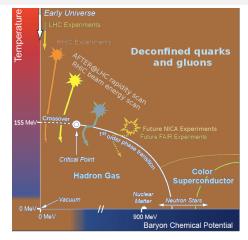
Kinematical coverage

ALICE could cover $\eta \sim 1-2$ for quarkonium into dileptons with one muon in the muon arm and another in the central barrel


[done for UPCs in the collider mode]

NB: The coverage depends on the target position

J.P. Lansberg (IPNO)

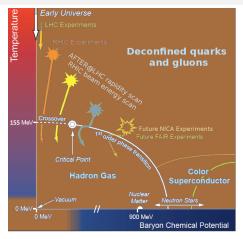

The AFTER@LHC program

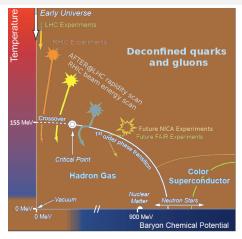
July 25, 2018 20 / 30

July 25, 2018 21 / 30

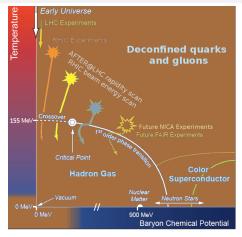
• Energy domain between SPS and RHIC

July 25, 2018 21 / 30

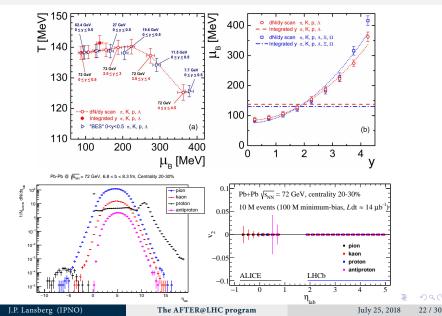

- Energy domain between SPS and RHIC
- Rapidity scan to scan through $\mu_B \& T$ (e.g. $\nu_2(y) \leftrightarrow \eta/s$) wit a good PID (LHCb and ALICE)


J.P. Lansberg (IPNO)

July 25, 2018 21 / 30


- Energy domain between SPS and RHIC
- Rapidity scan to scan through $\mu_B \& T$ (e.g. $\nu_2(y) \leftrightarrow \eta/s$) wit a good PID (LHCb and ALICE)
- At backward rapidities, the background for $\mu^+\mu^-$ is tractable even without absorber
- Handle on more quarkonium states
 (e.g. χ_{c,b}, η_c) and on open charm and beauty

- Energy domain between SPS and RHIC
- Rapidity scan to scan through $\mu_B \& T$ (e.g. $\nu_2(y) \leftrightarrow \eta/s$) wit a good PID (LHCb and ALICE)
- At backward rapidities, the background for μ⁺μ⁻ is tractable even without absorber
- Handle on more quarkonium states (e.g. χ_{c,b}, η_c) and on open charm and beauty
- FoMs for χ_{c,b} and η_c to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations


- Energy domain between SPS and RHIC
- Rapidity scan to scan through $\mu_B \& T$ (e.g. $\nu_2(y) \leftrightarrow \eta/s$) wit a good PID (LHCb and ALICE)
- At backward rapidities, the background for μ⁺μ⁻ is tractable even without absorber
- Handle on more quarkonium states (e.g. χ_{c,b}, η_c) and on open charm and beauty
- FoMs for χ_{c,b} and η_c to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations

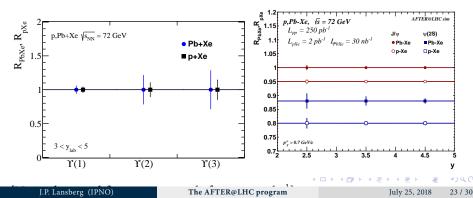
Even with 1 billion J/ψ 's, the *direct* J/ψ yield will remain unprecise by 30 % !

July 25, 2018 21 / 30

Rapidity scan

B.Trzeciak et al.Few-Body Syst (2017) 58:148

B.Trzeciak et al.Few-Body Syst (2017) 58:148


• Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC

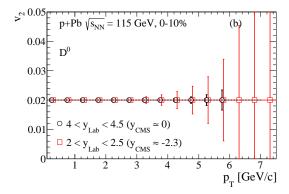
B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC
- Clear need for a reliable baseline with *pA* systems

B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies, multiple quarkonium studies are needed to study the QGP formation at a new energy range between SPS and RHIC
- Clear need for a reliable baseline with *pA* systems
- Statistical-uncertainty projections (accounting for background subtraction)

Part V


Some FoM for Cold Nuclear Matter Studies

J.P. Lansberg (IPNO)

The AFTER@LHC program

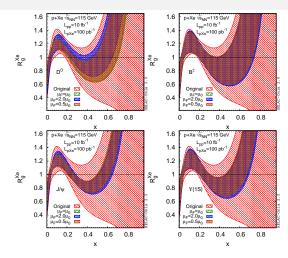
July 25, 2018 24 / 30

First look at small systems or new look at Cold Nuclear Matter effects

For *pp* collisions, multiplicity studies will be done soon !

J.P. Lansberg (IPNO)

The AFTER@LHC program

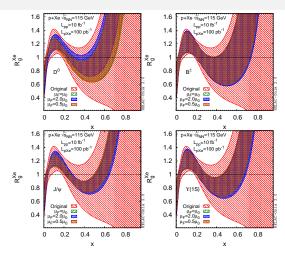

July 25, 2018 26 / 30

• EMC gluon effect totally unknown

- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments

- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments
- First projections are extremely promising

[NB: initial nPDF uncertainties for *x* > 0.1 are underestimated; simply no data exist there]



- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments
- First projections are extremely promising

[NB: initial nPDF uncertainties for *x* > 0.1 are underestimated; simply no data exist there]

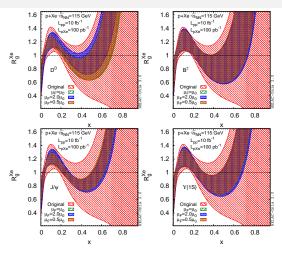
• Similar studies for the proton PDFs are yet to be done along the lines of the studies carried out for low-*x* gluon at the LHC PROSA Coll. Eur.Phys.J. C75 (2015)

396; R. Gauld, J. Rojo PRL 118 (2017) 072001

The AFTER@LHC program

July 25, 2018 26 / 30

High-*x* frontier


- EMC gluon effect totally unknown
- This is the realm of the FT LHC experiments
- First projections are extremely promising

[NB: initial nPDF uncertainties for *x* > 0.1 are underestimated; simply no data exist there]

• Similar studies for the proton PDFs are yet to be done along the lines of the studies carried out for low-*x* gluon at the LHC PROSA Coll. Eur.Phys.J. C75 (2015)

396; R. Gauld, J. Rojo PRL 118 (2017) 072001

 Contrary to nPDF studies bearing on nuclear modification factors, one needs ways to reduce the systematical theory uncertainties

イロト イポト イヨト イヨ

Reward: unique constraints on gluon PDFs at high *x* and low scales

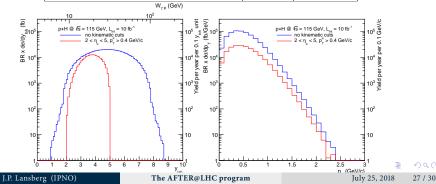
The AFTER@LHC program

July 25, 2018 26 / 30

	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10^3
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10^3
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

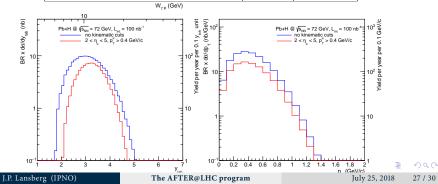
JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

J.P. Lansberg (IPNO)

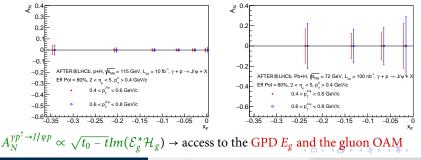

The AFTER@LHC program

 ↓ ↓ ≣ ↓
 ■
 • ○ へ ○

 July 25, 2018
 27 / 30


	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10^3
$\sigma_{J/\psi \to l^+l^-}$ (pb)	70.10	16.50×10^3
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

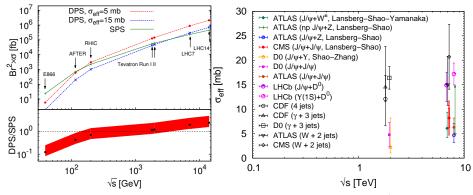
JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress


	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10^3
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10^{3}
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress

	pН	PbH
Photon-emitter	proton	Lead
$\sigma_{J/\psi}^{tot}$ (pb)	1.18×10^{3}	276.77×10 ³
$\sigma_{J/\psi \to l^+ l^-}$ (pb)	70.10	16.50×10^{3}
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} cut) (pb)	20.65	9.81×10 ³
$\sigma_{J/\psi \to l^+l^-}$ (with LHCb η_{μ} and $p_{\rm T}^{\mu}$ cut) (pb)	20.64	9.81×10 ³
# events	200 000	1000

JPL, L. Massacrier, L. Szymanowski, J. Wagner, arXiv:1709.09044 & in progress


J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 27 / 30

DPS studies in a new energy regime

Di- ψ production at \sqrt{s} = 115 GeV

About 1000 SPS events (incl. Branching) expected per year (10 fb⁻¹)

July 25, 2018 28 / 30

Part VI

Conclusion

J.P. Lansberg (IPNO)

The AFTER@LHC program

E ► < E ► E < </p>
July 25, 2018 29 / 30

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

• The nucleon spin and the transverse dynamics of the partons

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:

new energy, new rapidity domain and new probes

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition:

new energy, new rapidity domain and new probes

• 2 ways towards fixed-target collisions with the LHC beams

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

イロト イポト イヨト イヨト

• Our review is now out and will feed in the European Strategy via the Physics Beyond Collider WG

Part VII

Backup slides

J.P. Lansberg (IPNO)

The AFTER@LHC program

 Image: Image:

Heavy-Ion Physics

- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at √s_{NN} = 115 GeV and Pb+p collisions at √s_{NN} = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

Hadron structure

- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
 By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys.
 - by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of Ξ_{cc} at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al. [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Generalities

 Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

J.P. Lansberg (IPNO)

The AFTER@LHC program

July 25, 2018 35 / 30