JOURNÉES DE PROSPECTIVE IN2P3-IRFU Presqu'île de GIENS du 2 au 5 Avril 2012

QUARKONIA ET SAVEURS LOURDES

Javier Castillo Irfu/SPhN pour le Groupe Plasma Quarks-Gluons

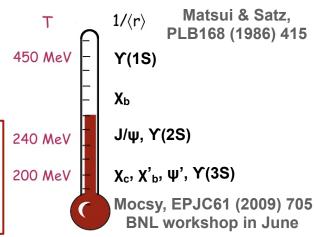
Journées de Prospective IN2P3-IRFU - Giens - 02/04/2012

Outline

- Physics motivations
 - Characterizing the QGP
 - Probes
- Proposed projects
 - Exploiting the present and near future
 - ALICE Upgrades
 - Muon Forward Tracker (MFT)
 - Forward Muon Spectrometer
 - VZERO
 - Emerging ideas
 - CHIC
 - AFTER

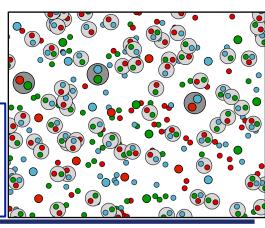
Characterizing the QGP

- Identify and study the properties of a new state of thermalized and deconfined nuclear matter, the QGP
- QGP properties
 - Medium density
 - Medium viscosity
 - Temperature
 - Deconfinement
- In this presentation we will focus on Temperature and Deconfinement using the heavy quarks as our privileged probes
- Other points were or will be addressed by F. Gelis or M. Estienne


Probing the QGP Thermalization

QGP Thermometers

Low mass dileptons (Chiral symmetry restoration temperature)


- ALICE
- MFT
- Quarkonia (Initial temperature)
 - CMS, ALICE
 - MFT
 - CHIC
 - AFTER

Sequential quarkonia suppression by colour-screening could provide a measurement of the QGP initial temperature

- Recombination of deconfined quarks in the thermal medium
 - ALICE, CMS
 - -MFT

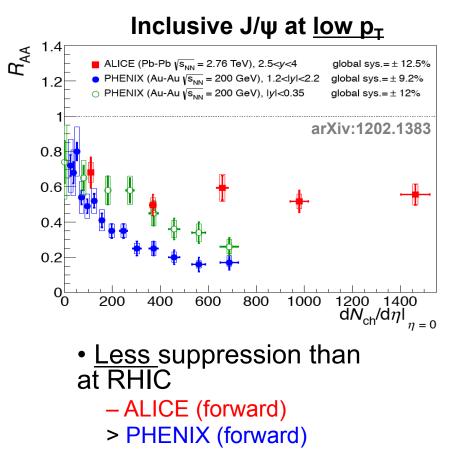
If c-cbar pairs are abundantly produced and thermalize with the medium, recombination could compensate or exceed colour-screening suppression

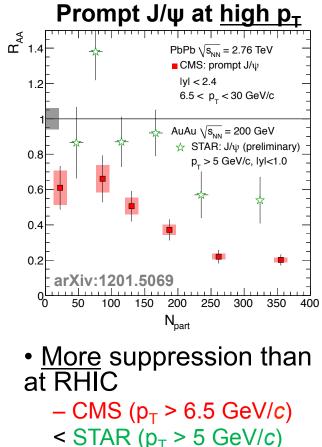
LHC ANALYSES

QGP THERMOMETER **QGP** CONSTITUENT INTERACTIONS

 2012 – 2018
 2012 – 2018

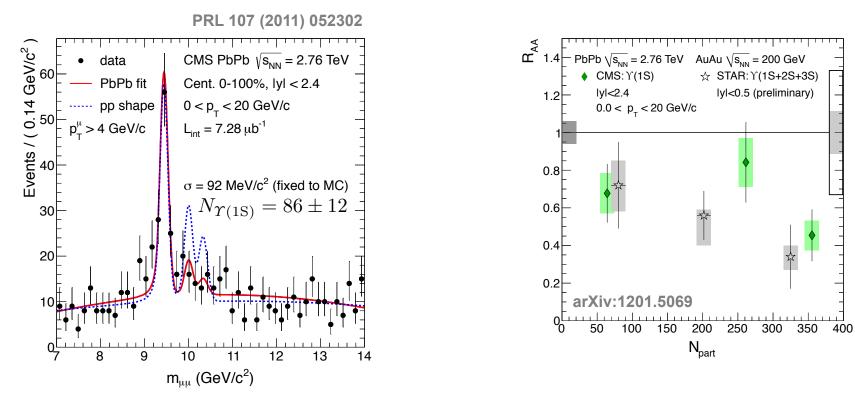
 IPNL, IPNO, IRFU,
 LPC, Subatech


 LPC, Subatech
 LLR


 33 physicists
 6 physicists

Already achieved – J/ψ

Nuclear modification factor R_{AA} compares Pb-Pb to p-p, 1 means no medium effect



- Recombination of charm quarks in the medium could be at play to produce low p_T J/ ψ

- Would imply that deconfined heavy quarks do evolve with the medium


Already achieved - Y

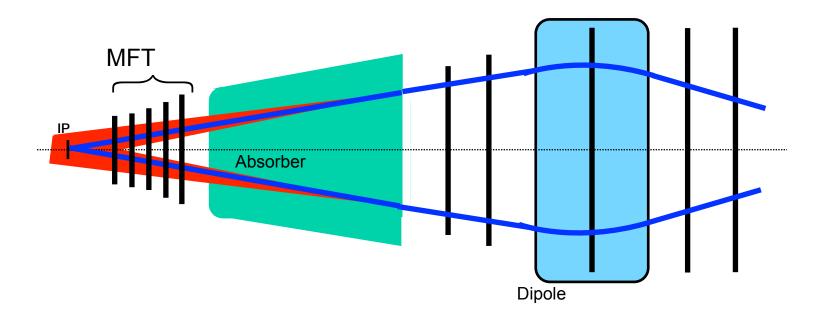
- First heavy ion measurement of Y excited states!
- Y excited states are suppressed
- Y ground state is suppressed by about 40%
 - Could be consistent with excited states suppression only.

Already achieved – open Heavy Flavor

- Suppression of muons from c- and b-meson decays
- Suppression of non-prompt J/ψ
 - Indications of high- p_T b-quark quenching
- Flavour dependence of parton energy loss is at reach!

- J/ ψ production from zero to high p_T
 - High statistics differential studies (centrality, p_T , y)
 - Confirmation of recombination interpretation and its characterization
 - Elliptic flow, new observable sensitive to regeneration models
- Initial state effects
 - Mandatory to quantify suppression from the QGP
 - p-Pb and Pb-p (2012)
- J/ ψ , ψ ', χ_c (?): suppression pattern
- Υ , Υ ', Υ '': suppression pattern, likely to be the right thermometer at LHC
- Open-charm and -beauty measurement
 - Open-charm: best reference for charmonium suppression
 - Open-beauty: non-prompt J/ψ
- Flavor dependence of parton energy loss
- ALICE and CMS perfectly complement each other
- To continue to take advantage of its particularities in the HL-LHC era, ALICE is proposing an important upgrade program
- CMS will continue to make the best usage of the existing detector with its good mass resolution, secondary vertex capabilities, and large bandwidth

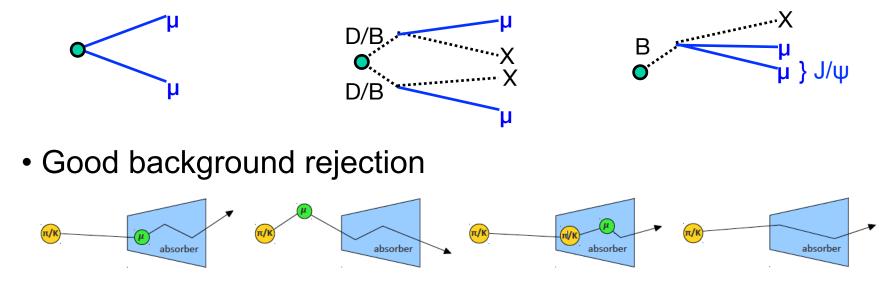
ALICE MFT & ALICE MUON UPGRADE



QGP THERMOMETER QGP CONSTITUENTS INTERACTION

2012 – 2018 R&D IPNL, IPNO, IRFU, LPC, Subatech 5.4 M€ 33 physicists, 15 eng. & tech.

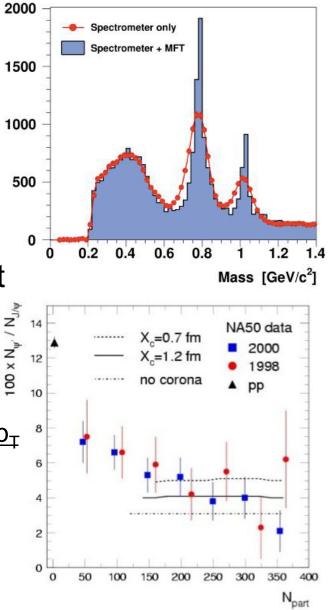
Why an MFT



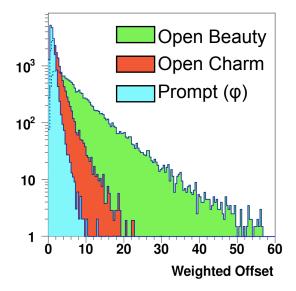
- Present Spectrometer
 - Uncertainty in track extrapolation to the primary vertex
- Spectrometer + MFT
 - Matching muon tracks with clusters in the MFT
 - Improvement of the pointing angle resolution ⇒ improvement of mass resolution

Key considerations for MFT design

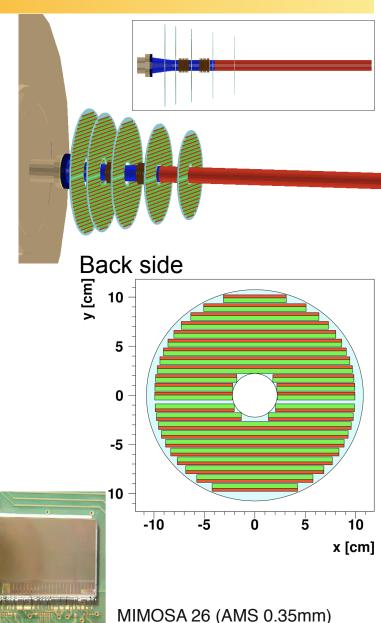
• Good secondary vertex capabilities for separation of muons from D (ct~150 μ m) and B (ct~500 μ m) mesons decays



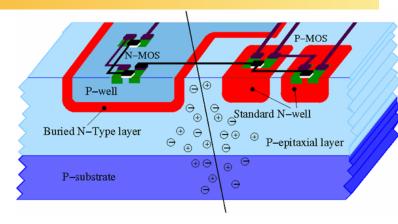
• High track matching rate with muon spectrometer


MFT physics case – I

- \bullet Medium effects: modification of the ρ spectral function
 - Improvement of invariant mass resolution
 - Better background rejection
 - Unique at LHC
- Improving the quarkonia measurement
 - Better invariant mass resolution
 - Better background rejection
 - Particularly important for the ψ '
 - Keep charmonia acceptance down to zero p_T
 - Unique at the LHC


- Flavor dependence of medium effects
 - Model independent charm and beauty separation using pointing angle
 - Charm and beauty flow
 - Full (p_T integrated) charm and beauty production cross-section
 - Important for quarkonium normalization
- Prompt J/ ψ down to zero p_T
 - B-tagging using secondary vertex
 - Unique measurement of beauty production at LHC
- Exploring the measurement of $\rm B_{c}$ meson in A-A:
 - Challenging and interesting

MFT working design


- 5 detection planes between the IP and the absorber
 - -80 < Z < -50 cm
 - R_{min} ~2.5 cm
 - $-11 < R_{max} < 16 \text{ cm}$
 - Surface ~ 2700 cm²
- Each MFT plane
 - consist of an assembly of ladders with
 - a sensible layer and a read-out layer
 - $-x/X_0 = 0.4\%$
 - double side to eliminate dead areas
- Each ladder
 - A flex with bounded pixel sensors
 - pixel size 20x20 µm

R&D going on

- Detector technology: Monolithic Active Pixel Sensors (MAPS)
 - Benefit from large expertise of IPHC&IRFU
 - Common R&D with ALICE ITS Upgrade
 - Sensible area and read-out electronics in the same Si substrate .
 - Pixel size = 20 µm
 - − Reduced thickness (50 μ m) ⇒ low material budget (x/X₀ = 0.4% / layer)
 - Moving towards Tower Jazz 0.18 µm technology
 - Improvement of radiation tolerance: 10¹⁴ neq/cm²;
 5 MRad (?)
 - Reduced consumption (175 mW/cm²)
 - Reduction of the integration time ~ 10 μs
- Mechanical constraints
 - Will hold the beam pipe
 - Planes positioning at ~ 10 μm
- Thermal studies
 - ~1 kW to dissipate

ALICE MFT & ALICE MUON UPGRADE ALICE

GETTING READY FOR HIGH LUMINOSITY LHC

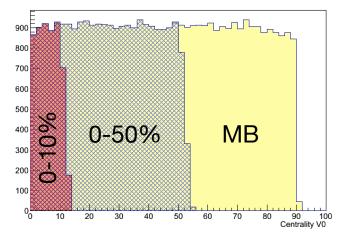
2012 – 2018 Feasibility studies IPNL, IPNO, IRFU, LPC, Subatech, 1.5 M€ 33 physicists, 7 eng. & tech.

Journées de Prospective IN2P3-IRFU - Giens – 02/04/2012

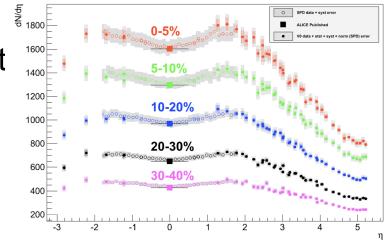
- High luminosity LHC:
 - Expected interaction rates: 50 kHz in Pb-Pb and 2 MHz in p-p
 - Major issue: Readout speed for tracking chambers (designed for 1kHz)
 - Major issue: Trigger RPC aging
 - Important issue: Muon Trigger selectivity (trigger rates)
- Tracking upgrade proposal
 - New read-out (CROCUS)
 - State of art FPGAs
 - Dead time < 100 µs
 - 20 CROCUS crates (7 boards per CROCUS)
- Trigger upgrade proposal
 - Replace the Front-End Electronics
 - New chip with an amplification stage to reduce RPC aging
 - R&D program needed (amplification => increased sensitivity to "noise")
 - Review trigger strategy

ALICE VZERO UPGRADE ALICE

GETTING READY FOR HIGH LUMINOSITY LHC


2012 – 2014 Feasibility studies IPNL 3 physicists, 1.5 eng. & tech.

Journées de Prospective IN2P3-IRFU - Giens – 02/04/2012



The VZERO detector

- A fundamental detector for ALICE
 - Main trigger detector
 - Background events rejection
 - Luminosity measurements
 - Centrality determination
 - Event plane determination
 - Multiplicity measurement
- Need maintenance and improvement to keep providing it essential input
 - Replacement of the scintillators foreseen due to aging
 - Upgrade of electronics to adapt to new LHC running conditions

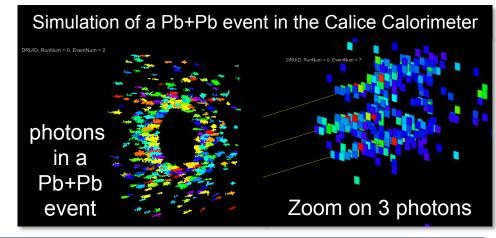
dN/dη en PbPb

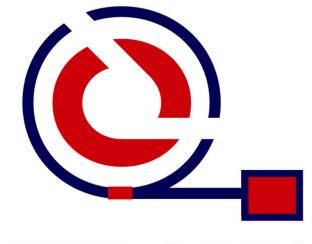
Centrality Triggers

CHIC QGP THERMOMETER

after 2015 Feasibility studies, simulations LLR 1 physicist

Journées de Prospective IN2P3-IRFU - Giens - 02/04/2012




Charm in Heavy Ion Collisions @ SPS

\bullet The J/ ψ family could be the right thermometer at SPS energies

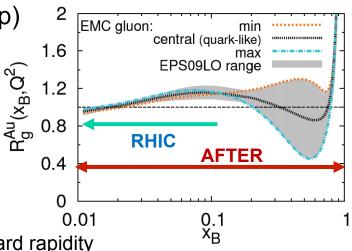
- It is mandatory to measure all states (J/ ψ , ψ ', χ_c): sequential suppression
- χ_c is the missing piece $\chi_c \rightarrow J/\psi + \gamma \rightarrow \mu^+ + \mu^- + \gamma$
- Measure charmonium states
 - in high luminosity p-A
 - in a wide (x_F) rapidity range -0.5< y_{CMS} <2
- Open charm, Drell-Yan for charmonium normalization

- Experimental apparatus
 - Fixed target experiment
 - Silicon pixel spectrometer
 - Δp/p~1% ; ΔM_{J/ψ}~20 MeV
 - 2.5 T 1m long dipole magnet
 - Si+W ultra-granular calorimeter
 - ΔE/E~20%/√E
 - Instrumented and magnetized Fe absorber

AFTER AFTER @ LHC TESTING QCD AT HIGH AND ULTRA-HIGH X_B QGP THERMOMETER

~ 2025

Feasibility studies IPNO, IRFU, LLR


4 physicists

Journées de Prospective IN2P3-IRFU - Giens - 02/04/2012

A Fixed Target ExpeRiment @ LHC

- Testing QCD at high and ultra-high x_B (QCD group)
- QGP related physics case:
 - high precision quarkonium studies
 - Constrain PDFs
- Use the 7 TeV LHC proton beam on fixed target
 - $-\sqrt{s}$ ~115 GeV : charmonium and bottomonium states
 - Measure high x_B gluon PDF in the nucleus
 - mandatory to understand quarkonium production at forward rapidity
 - Easy to measure many p-A systems
 - with the highest yields ever (see table)
- •Use the 2.76 TeV LHC Pb beam on fixed target
 - $-\sqrt{s}$ ~72 GeV: intermediate energy between SPS and LHC
 - Can study any Pb-A system including Pb-p
 - Direct study of the QGP in the target rest frame
- Experimental apparatus:
 - Silicon pixel spectrometer
 - Si+W EMCal
 - Fe magnetized muon ID detector
 - Hadronic calorimeter (to be defined)
 - PID detector (to be defined)

е		Yie	Yields in p-A for 1 rapidity unit at y=0			
	Target	Α	∫ <i>⊥</i> (fb ⁻¹ .yr ⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	Ν(Υ) yr -1 =Α <i>L</i> ℬσ _Υ	
2	1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵	
۳J	1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶	
ن يا	1cm W	185	0.31	1.1 10 9	2.3 10 ⁶	
₹	1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶	
LHC pPb 8.8 TeV		207	10-4	1.0 107	7.5 10 ⁴	
RHIC dAu 200GeV		198	1.5 10 -4	2.4 10 ⁶	5.9 10 ³	
RHIC dAu 62GeV		198	3.8 10 -6	1.2 10 ⁴	18	

Common

with

CHIC

Summary

• The harvest of LHC results has just started, but exciting new results are already there!

• In the short and medium term, we will continue to exploit the particularities and capabilities of the two complementary LHC experiment, ALICE and CMS

• For the longer term, we plan to upgrade the existing ALICE muon spectrometer and complement it with a Muon Forward Tracker (MFT), to continue to benefit from the ALICE particularities in the HL-LHC era.

 New insights into the thermal properties of the QGP will become available

• New ideas have recently emerged, CHIC could unveil QGP temperature at SPS, while AFTER could provide critical input for the QGP characterization at RHIC energies.