





## A Fixed-Target Programme at the LHC

### Future heavy-ion facilities

### J.P. Lansberg

IPN Orsay - Paris-Sud U./Paris Saclay U. -CNRS/IN2P3



AFTER@LHC Study group: http://after.in2p3.fr

J.P. Lansberg (IPNO)

The AFTER@LHC programme

## Part I

# The AFTER@LHC programme

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 2 / 21

イロト イポト イヨト イヨ

#### Physics Reports 522 (2013) 239-255



#### Physics opportunities of a fixed-target experiment using LHC beams

#### S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>a</sup> SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

| 1. | Introduction |                                                                    |      | Deconfinement in heavy-ion collisions                             |
|----|--------------|--------------------------------------------------------------------|------|-------------------------------------------------------------------|
| 2. |              | numbers and features                                               |      | 6.1. Quarkonium studies                                           |
| 3. |              | eon partonic structure                                             |      | 6.2. Jet quenching                                                |
|    | 3.1.         | Drell-Yan                                                          |      | 6.3. Direct photon                                                |
|    | 3.2.         | Gluons in the proton at large x                                    |      | 6.4. Deconfinement and the target rest frame                      |
|    |              | 3.2.1. Quarkonia                                                   |      | 6.5. Nuclear-matter baseline                                      |
|    |              | 3.2.2. Jets                                                        | 7.   | W and Z boson production in pp, pd and pA collisions              |
|    |              |                                                                    |      | <ol><li>First measurements in pA</li></ol>                        |
|    |              | 3.2.3. Direct/isolated photons                                     |      | 7.2. W/Z production in pp and pd                                  |
|    | 3.3.         | Gluons in the deuteron and in the neutron                          | 8.   | Exclusive, semi-exclusive and backward reactions                  |
|    | 3.4.         | Charm and bottom in the proton                                     |      | 8.1. Ultra-peripheral collisions                                  |
|    |              | 3.4.1. Open-charm production                                       |      | 8.2. Hard diffractive reactions                                   |
|    |              | 3.4.2. J/ψ + D meson production                                    |      | 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow -$ |
|    |              | 3.4.3. Heavy-quark plus photon production                          |      | 8.4. Very backward physics                                        |
| 4. |              | physics                                                            |      | 8.5. Direct hadron production                                     |
|    | 4.1.         | Transverse SSA and DY                                              | 9.   | Further potentialities of a high-energy fixed-target set-         |
|    | 4.2.         | Quarkonium and heavy-quark transverse SSA                          |      | 9.1. D and B physics                                              |
|    | 4.3.         | Transverse SSA and photon                                          |      | 9.2. Secondary beams                                              |
|    | 4.4.         | Spin asymmetries with a final state polarization                   |      | 9.3. Forward studies in relation with cosmic shower               |
| 5. |              | ear matter                                                         |      | Conclusions                                                       |
|    | 5.1.         |                                                                    |      | Acknowledgments                                                   |
|    | 5.2.         | Gluon nPDF                                                         |      | References                                                        |
|    |              | 5.2.1. Isolated photons and photon-jet correlations                |      |                                                                   |
|    |              | 5.2.2. Precision quarkonium and heavy-flavour studies              |      |                                                                   |
|    | 53           | Color filtering, energy loss, Sudakoy suppression and hadron break | k-un | in the nucleus                                                    |

イロト イヨト イヨト

5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

#### The AFTER@LHC programme

### • First document on arXiv early 2012



#### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>3</sup> SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

| 1  | Intro                                                                                     | duction                                               |  | Deconfinement in heavy-ion collisions                                        |  |  |
|----|-------------------------------------------------------------------------------------------|-------------------------------------------------------|--|------------------------------------------------------------------------------|--|--|
| 2. | Key numbers and features                                                                  |                                                       |  | 6.1. Quarkonium studies                                                      |  |  |
| 3. |                                                                                           |                                                       |  |                                                                              |  |  |
| 3. |                                                                                           | on partonic structure                                 |  | 6.2. Jet quenching                                                           |  |  |
|    | 3.1.                                                                                      | Drell-Yan                                             |  | 6.3. Direct photon                                                           |  |  |
|    | 3.2.                                                                                      | Gluons in the proton at large x                       |  | 6.4. Deconfinement and the target rest frame                                 |  |  |
|    |                                                                                           | 3.2.1. Quarkonia                                      |  | 6.5. Nuclear-matter baseline                                                 |  |  |
|    |                                                                                           | 3.2.2. Jets                                           |  | W and Z boson production in pp, pd and pA collisions                         |  |  |
|    |                                                                                           |                                                       |  | <ol><li>First measurements in pA</li></ol>                                   |  |  |
|    |                                                                                           | 3.2.3. Direct/isolated photons                        |  | 7.2. W/Z production in pp and pd                                             |  |  |
|    | 3.3.                                                                                      | Gluons in the deuteron and in the neutron             |  | Exclusive, semi-exclusive and backward reactions                             |  |  |
|    | 3.4.                                                                                      | Charm and bottom in the proton                        |  | 8.1. Ultra-peripheral collisions                                             |  |  |
|    |                                                                                           | 3.4.1. Open-charm production                          |  | 8.2. Hard diffractive reactions                                              |  |  |
|    |                                                                                           | 3.4.2. J/ψ + D meson production                       |  | <ol> <li>Heavy-hadron (diffractive) production at x<sub>F</sub> →</li> </ol> |  |  |
|    |                                                                                           | 3.4.3. Heavy-quark plus photon production             |  | 8.4. Very backward physics                                                   |  |  |
| 4. | Spin p                                                                                    | physics                                               |  | 8.5. Direct hadron production                                                |  |  |
|    | 4.1.                                                                                      | Transverse SSA and DY                                 |  | Further potentialities of a high-energy fixed-target set-                    |  |  |
|    | 4.2.                                                                                      | Quarkonium and heavy-quark transverse SSA             |  | 9.1. D and B physics                                                         |  |  |
|    | 4.3.                                                                                      | Transverse SSA and photon                             |  | 9.2. Secondary beams                                                         |  |  |
|    | 4.4.                                                                                      | Spin asymmetries with a final state polarization      |  | 9.3. Forward studies in relation with cosmic shower                          |  |  |
| 5. |                                                                                           | ar matter                                             |  |                                                                              |  |  |
| э. |                                                                                           |                                                       |  | Conclusions                                                                  |  |  |
|    | 5.1.                                                                                      | Quark nPDF: Drell-Yan in pA and Pbp                   |  | Acknowledgments                                                              |  |  |
|    | 5.2.                                                                                      | Gluon nPDF                                            |  | References                                                                   |  |  |
|    |                                                                                           | 5.2.1. Isolated photons and photon-jet correlations   |  |                                                                              |  |  |
|    |                                                                                           | 5.2.2. Precision quarkonium and heavy-flavour studies |  |                                                                              |  |  |
|    | 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus |                                                       |  |                                                                              |  |  |

イロト イヨト イヨト イヨト

J.P. Lansberg (IPNO)

#### The AFTER@LHC programme

- First document on arXiv early 2012
- All the subjects (even astroparticles) already considered



#### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>3</sup> SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

| 1.  | Intro                                                                                  | luction  |                                                | 6. | Deco  | nfinement in heavy-ion collisions                          |
|-----|----------------------------------------------------------------------------------------|----------|------------------------------------------------|----|-------|------------------------------------------------------------|
| 2.  |                                                                                        |          | and features                                   |    | 6.1.  | Quarkonium studies                                         |
| 3.  | Nucle                                                                                  | on parto | onic structure                                 |    | 6.2.  | Jet quenching                                              |
|     | 3.1.                                                                                   | Drell-   | Yan                                            |    | 6.3.  | Direct photon                                              |
|     | 3.2.                                                                                   | Gluon    | s in the proton at large x                     |    | 6.4.  | Deconfinement and the target rest frame                    |
|     |                                                                                        | 3.2.1.   | Quarkonia                                      |    | 6.5   | Nuclear-matter baseline                                    |
|     |                                                                                        | 3.2.2.   | lets                                           | 7. | W an  | d Z boson production in pp, pd and pA collisions           |
|     |                                                                                        |          |                                                |    | 7.1.  | First measurements in pA                                   |
|     |                                                                                        | 3.2.3.   | Direct/isolated photons                        |    | 7.2.  | W/Z production in pp and pd                                |
|     | 3.3.                                                                                   | Gluons   | in the deuteron and in the neutron             | 8  |       | sive, semi-exclusive and backward reactions                |
|     | 3.4.                                                                                   | Charm    | and bottom in the proton                       | 0. | 8.1.  | Ultra-peripheral collisions                                |
|     |                                                                                        | 3.4.1.   |                                                |    | 8.2.  | Hard diffractive reactions                                 |
|     |                                                                                        |          | $1/\psi + D$ meson production                  |    |       |                                                            |
|     |                                                                                        | 3.4.3.   |                                                |    | 8.3.  | Heavy-hadron (diffractive) production at $x_F \rightarrow$ |
| 4   | Snin r                                                                                 |          | ricavy-quark plus proton production            |    | 8.4.  | Very backward physics                                      |
| · . | 4.1.                                                                                   |          | erse SSA and DY                                |    | 8.5.  | Direct hadron production                                   |
|     | 4.1.                                                                                   |          |                                                | 9. |       | er potentialities of a high-energy fixed-target set-       |
|     |                                                                                        |          | onium and heavy-quark transverse SSA           |    | 9.1.  | D and B physics                                            |
|     | 4.3.                                                                                   |          | erse SSA and photon                            |    | 9.2.  | Secondary beams                                            |
|     | 4.4.                                                                                   |          | symmetries with a final state polarization     |    | 9.3.  | Forward studies in relation with cosmic shower             |
| 5.  |                                                                                        |          | ۲                                              |    | Conc  | usions                                                     |
|     | 5.1.                                                                                   |          | nPDF: Drell-Yan in pA and Pbp                  |    | Ackn  | owledgments                                                |
|     | 5.2.                                                                                   | Gluon    | nPDF                                           |    | Refer | ences                                                      |
|     |                                                                                        | 5.2.1.   | Isolated photons and photon-jet correlations   |    |       |                                                            |
|     |                                                                                        | 5.2.2.   | Precision guarkonium and heavy-flavour studies |    |       |                                                            |
|     | 5.3 Color filtering energy loss Sudakov suppression and hadron break-up in the nucleus |          |                                                |    |       |                                                            |

イロト イヨト イヨト イヨト

Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

The AFTER@LHC programme

- First document on arXiv early 2012
- All the subjects (even astroparticles) already considered
- At the time, the bent crystal solution was the only one mentioned



Physics Reports 522 (2013) 239-255

#### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>3</sup> SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

| - <u>b</u> - | Intro  |                                                                     | 6.    | Deconfinement in heavy-ion collisions                                       |
|--------------|--------|---------------------------------------------------------------------|-------|-----------------------------------------------------------------------------|
| 2.           | Кеу п  | umbers and features                                                 |       | 6.1. Quarkonium studies                                                     |
| 3.           | Nucle  | on partonic structure                                               |       | 6.2. Jet quenching                                                          |
|              | 3.1.   | Drell-Yan                                                           |       | 6.3. Direct photon                                                          |
|              | 3.2.   | Gluons in the proton at large x                                     |       | 6.4. Deconfinement and the target rest frame                                |
|              |        | 3.2.1. Quarkonia                                                    |       | 6.5. Nuclear-matter baseline                                                |
|              |        | 3.2.2. Jets                                                         | 7.    | W and Z boson production in pp, pd and pA collisions                        |
|              |        |                                                                     |       | 7.1. First measurements in pA                                               |
|              |        | 3.2.3. Direct/isolated photons                                      |       | 7.2. W/Z production in pp and pd                                            |
|              | 3.3.   | Gluons in the deuteron and in the neutron                           | 8.    | Exclusive, semi-exclusive and backward reactions                            |
|              | 3.4.   | Charm and bottom in the proton                                      |       | 8.1. Ultra-peripheral collisions                                            |
|              |        | 3.4.1. Open-charm production                                        |       | 8.2. Hard diffractive reactions.                                            |
|              |        | 3.4.2. 1/\u03c8 + D meson production                                |       | 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$             |
|              |        | 3.4.3. Heavy-guark plus photon production                           |       | 8.4. Very backward physics                                                  |
| 4.           | Spin ( | physics                                                             |       | 8.5. Direct hadron production                                               |
|              | 4.1.   |                                                                     | 9.    | Further potentialities of a high-energy fixed-target set-                   |
|              | 4.2.   | Quarkonium and heavy-quark transverse SSA                           | 9.    |                                                                             |
|              | 4.3.   | Transverse SSA and photon                                           |       |                                                                             |
|              | 4.4.   | Spin asymmetries with a final state polarization                    |       | 9.2. Secondary beams<br>9.3. Forward studies in relation with cosmic shower |
| 5.           |        |                                                                     | ~     |                                                                             |
| э.           | 5.1.   | ar matter                                                           | 0.    | Conclusions                                                                 |
|              | 5.1.   | Quark nPDF: Drell-Yan in pA and Pbp                                 |       | Acknowledgments                                                             |
|              | 5.2.   | Gluon nPDF                                                          |       | References                                                                  |
|              |        | 5.2.1. Isolated photons and photon-jet correlations                 |       |                                                                             |
|              |        | 5.2.2. Precision quarkonium and heavy-flavour studies               |       |                                                                             |
|              | 5.3.   | Color filtering, energy loss, Sudakov suppression and hadron break- | -up i | in the nucleus                                                              |
|              |        |                                                                     |       |                                                                             |

J.P. Lansberg (IPNO)

The AFTER@LHC programme

- First document on arXiv early 2012
- All the subjects (even astroparticles) already considered
- At the time, the bent crystal solution was the only one mentioned
- First discussions about LHCb-SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)



Physics Reports 522 (2013) 239-255

### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>3</sup> SLAC National Accelerator Laboratory, Stanford University, Menio Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

Introduction 6 Deconfinement in heavy-ion collisions Key numbers and features..... Quarkonium studies 61 3. Nucleon partonic structure let quenching 3.1. Drell-Yan..... Direct photon 6.3. 3.2. Gluons in the proton at large x..... 64 Deconfinement and the target rest frame..... 3.2.1. Quarkonia..... Nuclear-matter baseline..... 65 3.2.2. lets ..... 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd ..... 7.2. 3.3. Gluons in the deuteron and in the neutron...... 8. Exclusive, semi-exclusive and backward reactions ...... 3.4. Charm and bottom in the proton...... Ultra-peripheral collisions 8.1 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2.  $1/\psi + D$  meson production ..... 8.3. Heavy-hadron (diffractive) production at  $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Verv backward physics..... 4 Spin physics 85 Direct hadron production..... 4.1. Transverse SSA and DY ..... Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-guark transverse SSA .... 9.1. D and B physics ..... 4.3. Transverse SSA and photon..... 9.2 Secondary beams ..... 4.4. Spin asymmetries with a final state polarization 03 Forward studies in relation with cosmic shower Nuclear matter ..... Conclusions 5.1. Ouark nPDF: Drell-Yan in pA and Pbp..... Acknowledgments 5.2. Gluon nPDF..... References.... 5.2.1. Isolated photons and photon-jet correlations..... 5.2.2. Precision guarkonium and heavy-flavour studies

5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

#### The AFTER@LHC programme

- First document on arXiv early 2012
- All the subjects (even astroparticles) already considered
- At the time, the bent crystal solution was the only one mentioned
- First discussions about LHCb-SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
- Followed by workshops to draft a programme and perform feasibility studies (a special issue published)



Physics Reports 522 (2013) 239-255

### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>3</sup> SLAC National Accelerator Laboratory, Stanford University, Menio Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

Introduction 6. Deconfinement in heavy-ion collisions Key numbers and features..... Quarkonium studies 61 Nucleon partonic structure let quenching ..... 3.1 Drell-Yan..... Direct photon 6.3. 3.2. Gluons in the proton at large x..... 64 Deconfinement and the target rest frame...... 3.2.1. Quarkonia..... Nuclear-matter baseline...... lets..... 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd ..... 7.2. 3.3. Gluons in the deuteron and in the neutron...... 8. Exclusive, semi-exclusive and backward reactions ...... 3.4. Charm and bottom in the proton...... 8.1 Ultra-peripheral collisions 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2.  $1/\psi + D$  meson production ..... 8.3. Heavy-hadron (diffractive) production at  $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Very backward physics 4 Spin physics 85 Direct hadron production..... 4.1. Transverse SSA and DY ..... Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-quark transverse SSA .... 9.1. D and B physics ..... 4.3. Transverse SSA and photon..... 9.2 Secondary beams ..... 4.4. Spin asymmetries with a final state polarization 03 Forward studies in relation with cosmic shower Nuclear matter .... 10 Conclusions Ouark nPDF: Drell-Yan in pA and Pbp..... Acknowledgments 5.2. Gluon nPDF.... References.

- 5.2.1. Isolated photons and photon-jet correlations....
- 5.2.2. Precision guarkonium and heavy-flavour studies......
- 5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

#### The AFTER@LHC programme

- First document on arXiv early 2012
- All the subjects (even astroparticles) already considered
- At the time, the bent crystal solution was the only one mentioned
- First discussions about LHCb-SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
- Followed by workshops to draft a programme and perform feasibility studies (a special issue published)
- 2016: Physics Beyond Colliders (PBC) Working Group set up by CERN [pbc.web.cern.ch]



Physics Reports 522 (2013) 239-255

### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>3</sup> SLAC National Accelerator Laboratory, Stanford University, Menio Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

#### Introduction 6. Deconfinement in heavy-ion collisions Key numbers and features Quarkonium studies 61 Nucleon partonic structure let quenching ..... 3.1 Drell-Yan..... Direct photon 3.2. Gluons in the proton at large x..... 64 Deconfinement and the target rest frame... 3.2.1. Quarkonia..... Nuclear-matter baseline..... lets ..... 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... 7.2. W/Z production in pp and pd ..... 3.3. Gluons in the deuteron and in the neutron...... Exclusive, semi-exclusive and backward reactions ...... 3.4. Charm and bottom in the proton...... 81 Ultra-peripheral collisions 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2. $1/\psi + D$ meson production ..... 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Very backward physics 4 Spin physics 85 Direct hadron production..... Transverse SSA and DY..... 4.1 Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-quark transverse SSA .... D and B physics ..... 43 Transverse SSA and photon 9.2. Secondary beams ..... 44 Spin asymmetries with a final state polarization Forward studies in relation with cosmic shower Nuclear matter ... .10 Conclusions Ouark nPDF: Drell-Yan in pA and Pbp..... Acknowledgments

References.

- 5.2. Gluon nPDF..... 5.2.1. Isolated photons and photon-jet correlations...
- 5.3. Color filtering, energy loss. Sudakov suppression and hadron break-up in the nucleus
- Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

#### The AFTER@LHC programme

- First document on arXiv early 2012
- All the subjects (even astroparticles) already considered
- At the time, the bent crystal solution was the only one mentioned
- First discussions about LHCb-SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC) 2.
- Followed by workshops to draft a programme and perform feasibility studies (a special issue published)
- 2016: Physics Beyond Colliders (PBC) Working Group set up by CERN [pbc.web.cern.ch]
- 2017: first SMOG analyses out



Physics Reports 522 (2013) 239-255

### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>a</sup> SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France 6 IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

#### Introduction..... 6. Deconfinement in heavy-ion collisions ..... Key numbers and features..... 61 Quarkonium studies ..... Nucleon partonic structure let quenching ..... 3.1 Drell-Yan..... Direct photon Gluons in the proton at large x..... 32 64 Deconfinement and the target rest frame... 3.2.1. Ouarkonia Nuclear-matter baseline..... lets 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd ...... 7.2. 3.3. Gluons in the deuteron and in the neutron...... Exclusive, semi-exclusive and backward reactions ...... 3.4. Charm and bottom in the proton...... 81 Ultra-peripheral collisions 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2. $1/\psi + D$ meson production ..... 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Very backward physics 4 Spin physics 85 Direct hadron production...... Transverse SSA and DY..... 4.1 Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-quark transverse SSA .... D and B physics ..... 43 Transverse SSA and photon..... 9.2. Secondary beams ..... 44 Spin asymmetries with a final state polarization Forward studies in relation with cosmic shower Nuclear matter ... Conclusions Ouark nPDF: Drell-Yan in pA and Pbp..... Acknowledgments 5.2 Gluon nPDF References.

- Isolated photons and photon-jet correlations. Precision guarkonium and heavy-flavour studies
- 5.3. Color filtering, energy loss, Sudakoy suppression and hadron break-up in the nucleus

#### The AFTER@LHC programme

- First document on arXiv early 2012
- All the subjects (even astroparticles) already considered
- At the time, the bent crystal solution was the only one mentioned
- First discussions about LHCb-SMOG at Les Houches on January 2014 (first look at reconstructed data; first simulations of the occupancy in LHCb for HIC)
- Followed by workshops to draft a programme and perform feasibility studies (a special issue published)
- 2016: Physics Beyond Colliders (PBC) Working Group set up by CERN [pbc.web.cern.ch]
- 2017: first SMOG analyses out
- 2018 : AFTER@LHC review out & PBC document soon out



Physics Reports 522 (2013) 239-255

### Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky<sup>a</sup>, F. Fleuret<sup>b</sup>, C. Hadjidakis<sup>c</sup>, J.P. Lansberg<sup>c,\*</sup>

<sup>3</sup> SLAC National Accelerator Laboratory, Stanford University, Menio Park, CA 94025, USA <sup>b</sup> Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France <sup>c</sup> IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

#### Contents

#### Introduction..... 6. Deconfinement in heavy-ion collisions Key numbers and features..... Quarkonium studies ..... Nucleon partonic structure let quenching ..... 3.1 Drell-Yan Direct photon Gluons in the proton at large x..... 32 64 Deconfinement and the target rest frame... 3.2.1. Ouarkonia Nuclear-matter baseline..... lets ..... 7. W and Z boson production in pp, pd and pA collisions... First measurements in nA 3.2.3. Direct/isolated photons..... W/Z production in pp and pd ...... 7.2. 3.3. Gluons in the deuteron and in the neutron...... Exclusive, semi-exclusive and backward reactions ...... 3.4. Charm and bottom in the proton 81 Ultra-peripheral collisions ..... 3.4.1. Open-charm production..... 82 Hard diffractive reactions 3.4.2. $1/\psi + D$ meson production ..... 8.3. Heavy-hadron (diffractive) production at $x_F \rightarrow$ 3.4.3. Heavy-guark plus photon production ... 8.4. Very backward physics 4 Spin physics 85 Direct hadron production...... Transverse SSA and DY ..... 4.1 Further potentialities of a high-energy fixed-target set-4.2. Ouarkonium and heavy-quark transverse SSA .... D and B physics ..... 43 Transverse SSA and photon..... 9.2. Secondary beams ..... 44 Spin asymmetries with a final state polarization Forward studies in relation with cosmic shower Nuclear matter ... Conclusions Ouark nPDF: Drell-Yan in pA and Pbp..... Acknowledgments Gluon nPDF References. 521 Isolated photons and photon-jet correlations.

- 5.2.2. Precision guarkonium and heavy-flavour studies
- 5.3. Color filtering, energy loss. Sudakov suppression and hadron break-up in the nucleus

J.P. Lansberg (IPNO)

#### The AFTER@LHC programme

## The AFTER@LHC programme

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis<sup>a,1</sup>, D. Kikoła<sup>b,1</sup>, J.P. Lansberg<sup>a,1,\*</sup>, L. Massacrier<sup>a,1</sup>, M.G. Echevarria<sup>c,2</sup>, A. Kusina<sup>d,2</sup>,

I. Schienbein<sup>e,2</sup>, J. Seixas<sup>f,g,2</sup>, H.S. Shao<sup>h,2</sup>, A. Signori<sup>i,2</sup>, B. Trzeciak<sup>j,2</sup>, S.J. Brodsky<sup>k</sup>, G. Cavoto<sup>l</sup>,

C. Da Silva<sup>m</sup>, F. Donato<sup>n</sup>, E.G. Ferreiro<sup>0,p</sup>, I. Hřivnáčová<sup>a</sup>, A. Klein<sup>m</sup>, A. Kurepin<sup>q</sup>, C. Lorcé<sup>r</sup>, F. Lyonnet<sup>s</sup>,

Y. Makdisi<sup>t</sup>, S. Porteboeuf<sup>u</sup>, C. Quintans<sup>g</sup>, A. Rakotozafindrabe<sup>v</sup>, P. Robbe<sup>w</sup>, W. Scandale<sup>x</sup>,

N. Topilskayaq, A. Urasy, J. Wagnerz, N. Yamanakaa, Z. Yangaa, A. Zelenskit

### Abstract

We review the context, the motivations and the expected performances of a comprehensive and ambitious fixed-target program using the multi-TeV proton and ion LHC beams. We also provide a detailed account of the different possible technical implementations ranging from an internal wire target to a full dedicated beam line extracted with a bent crystal. The possibilities offered by the use of the ALICE and LHCb detectors in the fixed-target mode are also reviewed.

## $\mathcal{O}(100)$ pages – To be submitted to Physics Reports

The AFTER@LHC programme

## The AFTER@LHC programme

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis<sup>a,1</sup>, D. Kikoła<sup>b,1</sup>, J.P. Lansberg<sup>a,1,\*</sup>, L. Massacrier<sup>a,1</sup>, M.G. Echevarria<sup>c,2</sup>, A. Kusina<sup>d,2</sup>,

I. Schienbein<sup>e,2</sup>, J. Seixas<sup>f,g,2</sup>, H.S. Shao<sup>h,2</sup>, A. Signori<sup>i,2</sup>, B. Trzeciak<sup>j,2</sup>, S.J. Brodsky<sup>k</sup>, G. Cavoto<sup>1</sup>,

C. Da Silva<sup>m</sup>, F. Donato<sup>n</sup>, E.G. Ferreiro<sup>0,p</sup>, I. Hřivnáčová<sup>a</sup>, A. Klein<sup>m</sup>, A. Kurepin<sup>q</sup>, C. Lorcé<sup>r</sup>, F. Lyonnet<sup>s</sup>,

Y. Makdisi<sup>t</sup>, S. Porteboeuf<sup>u</sup>, C. Quintans<sup>g</sup>, A. Rakotozafindrabe<sup>v</sup>, P. Robbe<sup>w</sup>, W. Scandale<sup>x</sup>,

N. Topilskayaq, A. Urasy, J. Wagnerz, N. Yamanakaa, Z. Yangaa, A. Zelenskit

### Abstract

We review the context, the motivations and the expected performances of a comprehensive and ambitious fixed-target program using the multi-TeV proton and ion LHC beams. We also provide a detailed account of the different possible technical implementations ranging from an internal wire target to a full dedicated beam line extracted with a bent crystal. The possibilities offered by the use of the ALICE and LHCb detectors in the fixed-target mode are also reviewed.

## $\mathcal{O}(100)$ pages – To be submitted to Physics Reports

The AFTER@LHC programme

## The AFTER@LHC programme

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies

C. Hadjidakis<sup>a,1</sup>, D. Kikoła<sup>b,1</sup>, J.P. Lansberg<sup>a,1,\*</sup>, L. Massacrier<sup>a,1</sup>, M.G. Echevarria<sup>c,2</sup>, A. Kusina<sup>d,2</sup>,

I. Schienbein<sup>e,2</sup>, J. Seixas<sup>f.g.2</sup>, H.S. Shao<sup>h,2</sup>, A. Signori<sup>i,2</sup>, B. Trzeciak<sup>j,2</sup>, S.J. Brodsky<sup>k</sup>, G. Cavoto<sup>l</sup>,

C. Da Silva<sup>m</sup>, F. Donato<sup>n</sup>, E.G. Ferreiro<sup>0,p</sup>, I. Hřivnáčová<sup>a</sup>, A. Klein<sup>m</sup>, A. Kurepin<sup>q</sup>, C. Lorcé<sup>r</sup>, F. Lyonnet<sup>s</sup>,

Y. Makdisi<sup>t</sup>, S. Porteboeuf<sup>u</sup>, C. Quintans<sup>g</sup>, A. Rakotozafindrabe<sup>v</sup>, P. Robbe<sup>w</sup>, W. Scandale<sup>x</sup>,

N. Topilskayaq, A. Urasy, J. Wagnerz, N. Yamanakaa, Z. Yangaa, A. Zelenskit

### Abstract

We review the context, the motivations and the expected performances of a comprehensive and ambitious fixed-target program using the multi-TeV proton and ion LHC beams. We also provide a detailed account of the different possible technical implementations ranging from an internal wire target to a full dedicated beam line extracted with a bent crystal. The possibilities offered by the **use of the ALICE and LHCb** detectors in the fixed-target mode are also reviewed.

## $\mathcal{O}(100)$ pages – To be submitted to Physics Reports

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 5 / 21

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

### High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for  $x \gtrsim 0.5$ .
- Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

↔ high-energy neutrino & cosmic-ray physics

### High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for  $x \gtrsim 0.5$ .
- Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

↔ high-energy neutrino & cosmic-ray physics

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

### Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

- Test of the QCD factorisation framework
- · Determination of the linearly polarised gluons in unpolarised protons

### High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for  $x \gtrsim 0.5$ .
- Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

↔ high-energy neutrino & cosmic-ray physics

イロト イヨト イヨト イヨト

### Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

- Test of the QCD factorisation framework
- · Determination of the linearly polarised gluons in unpolarised protons

### Heavy-ion collisions towards large rapidities

- · A complete set of heavy-flavour studies between SPS and RHIC energies
- Test the formation of azimuthal asymmetries thanks to a broad rapidity reach
- Test the factorisation of cold nuclear effects from p + A to A + B collisions with Drell-Yan

### High-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- Very large gluon PDF uncertainties for  $x \gtrsim 0.5$ .
- Gluon EMC effect to understand the quark EMC effect
- · Proton charm content

Talk by A. Kusina on Wednesday

Talk by F. Fleuret this morning

↔ high-energy neutrino & cosmic-ray physics

### Dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum  $\mathcal{L}_{g;q}$ :

$$\frac{1}{2} = \frac{1}{2}\Delta\Sigma + \Delta G + \mathcal{L}_g + \mathcal{L}_q$$

Talk by N.Yamanaka on Tuesday

- Test of the QCD factorisation framework
- · Determination of the linearly polarised gluons in unpolarised protons

### Heavy-ion collisions towards large rapidities

- A complete set of heavy-flavour studies between SPS and RHIC energies
- · Test the formation of azimuthal asymmetries thanks to a broad rapidity reach
- Test the factorisation of cold nuclear effects from p + A to A + B collisions with Drell-Yan

October 4, 2018 5 / 21

Talk by A. Uras this morning

イロト イヨト イヨト イヨト

# Part III

# Possible Implementations and Luminosities

J.P. Lansberg (IPNO)

The AFTER@LHC programme

J.P. Lansberg (IPNO)

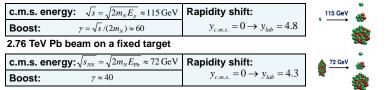
The AFTER@LHC programme

October 4, 2018 7 / 21

• • • • • • • • • • • •

### **Energy range**

7 TeV proton beam on a fixed target


| c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{GeV}$ Rapidity shift: |                                            | 115 GeV    |
|------------------------------------------------------------------------------------|--------------------------------------------|------------|
| <b>Boost:</b> $\gamma = \sqrt{s} / (2m_N) \approx 60$                              | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ | •          |
| 2.76 TeV Pb beam on a fixed target                                                 |                                            |            |
| <b>c.m.s. energy:</b> $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$  |                                            | 🎪 72 GeV 😸 |
| <b>Boost:</b> $\gamma \approx 40$                                                  | $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ | * 🎄        |

J.P. Lansberg (IPNO)

• • • • • • • • • • • •

### **Energy range**

7 TeV proton beam on a fixed target



Effect of boost :

[particularly relevant for high energy beams]

| J.P. Lansberg | (IPNO) |
|---------------|--------|
|---------------|--------|

### **Energy range**

7 TeV proton beam on a fixed target

c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \, \text{GeV}$ Rapidity shift:<br/> $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$  $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ 2.76 TeV Pb beam on a fixed targetc.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \, \text{GeV}$ Rapidity shift:<br/> $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ Boost: $\gamma \approx 40$  $\gamma_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ 

### Effect of boost :

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[v_{cms} < 0]$
- The ALICE central barrel becomes an extreme backward detector

### **Energy range**

7 TeV proton beam on a fixed target

c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV}$ Rapidity shift:<br/> $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$  $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ 2.76 TeV Pb beam on a fixed targetc.m.s. energy:  $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$ Rapidity shift:<br/> $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ Boost: $\gamma \approx 40$  $\gamma \simeq 0 \rightarrow y_{lab} = 4.3$ 

### Effect of boost :

[particularly relevant for high energy beams]

• LHCb and the ALICE muon arm become backward detectors

- $[v_{cms} < 0]$
- The ALICE central barrel becomes an extreme backward detector
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers

half of the backward region for most probes  $[-1 < x_F < 0]$ 

### **Energy range**

7 TeV proton beam on a fixed target

c.m.s. energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \, \text{GeV}$ Rapidity shift:<br/> $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ Boost: $\gamma = \sqrt{s} / (2m_N) \approx 60$  $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.8$ 2.76 TeV Pb beam on a fixed targetc.m.s. energy: $\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \, \text{GeV}$ Rapidity shift:<br/> $y_{c.m.s.} = 0 \rightarrow y_{lab} = 4.3$ Boost: $\gamma \approx 40$  $\gamma \approx 40$ 

### Effect of boost :

[particularly relevant for high energy beams]

イロト イヨト イヨト イヨト

• LHCb and the ALICE muon arm become backward detectors

 $[v_{cms} < 0]$ 

- The ALICE central barrel becomes an extreme backward detector
- With the reduced  $\sqrt{s}$ , their acceptance for physics grows and nearly covers

half of the backward region for most probes  $[-1 < x_F < 0]$ 

• Allows for backward physics up to high *x*<sub>2</sub>

[uncharted for proton-nucleus coll.; most relevant for  $pp^{\uparrow}$  with large  $x^{\uparrow}$  ]

#### Talk by C. Hadjidakis this morning

Internal gas target (with or without storage cell)

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 8 / 21

イロト イヨト イヨト

#### Talk by C. Hadjidakis this morning

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

#### Talk by C. Hadjidakis this morning

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

#### Talk by C. Hadjidakis this morning

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

### Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$

イロト イヨト イヨト イヨト

#### Talk by C. Hadjidakis this morning

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

### Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・

#### Talk by C. Hadjidakis this morning

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

### Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment

→ Luminosities with internal gas target or crystal-based solutions are not very different

#### Talk by C. Hadjidakis this morning

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- · Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

### Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - · Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- $\rightarrow$  Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow$  The beam line option is currently a little too ambitious (this could change with FCC)

#### Talk by C. Hadjidakis this morning

### Internal gas target (with or without storage cell)

- · can be installed in one of the existing LHC caverns, and coupled to existing experiments
- · validated by LHCb with SMOG [their luminosity monitor used as a gas target]
- uses the high LHC particle current: p flux:  $3.4 \times 10^{18}$  s<sup>-1</sup> & Pb flux:  $3.6 \times 10^{14}$  s<sup>-1</sup>
- Hermes storage cell proposed in LHCb (R&D needed for coating and polarisation performance)
- · A system like the polarised H-jet RHIC polarimeter (no storage cell) may also be used

Internal wire/foil target [used by Hera-B on the 920 GeV HERA p beam and by STAR at RHIC]

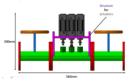
### Bent crystal option: beam line vs split

- crystals successfully tested at the LHC for proton and lead beam collimation [UA9 collaboration]
- the LHC beam halo is recycled on dense target: proton flux:  $5 \times 10^8 \text{ s}^{-1}$  & lead flux:  $2 \times 10^5 \text{ s}^{-1}$ 
  - Beam line : provides a new facility with 7 TeV proton beam but requires civil engineering
  - Beam split : similar fluxes; less/no civil engineering; could be coupled to an existing experiment
- $\rightarrow$  Luminosities with internal gas target or crystal-based solutions are not very different
- $\rightarrow$  The beam line option is currently a little too ambitious (this could change with FCC)
- $\rightarrow~$  The gas targets are the best polarised targets and satisfactory for heavy-ion studies

< 170 b

## One example of the solutions reviewed by the PBC working group




## **Solid targets**



Conceptual design work for a crystal beam-splitting scenario with inbeam solid targets in ALICE started by the proponents. Compatibility with ALICE collider programme to be studied in detail.

| Crystal at -72 m – 350 μrad                                                                               | INFN     |
|-----------------------------------------------------------------------------------------------------------|----------|
| Alice to IP2 - Crystal = 350 µrad ● -72 m from IP2<br>E = 6.5 TeV - Emittance = 5.05e-10 m rad, sigma = 6 |          |
| Machine aperture Options                                                                                  | 300.0    |
|                                                                                                           | 200.0    |
| Deflected Halo                                                                                            | 130.0    |
| Circulating beam                                                                                          | beta, "a |
| No -120 -110 -100 -90 -80 -70 -60 -50 -40 -10 -20 -20 0 10 20 30 40 50 60 10 10 10                        |          |
|                                                                                                           | -100     |
|                                                                                                           |          |
| u                                                                                                         |          |
| a                                                                                                         |          |
| 8                                                                                                         |          |
| s [m]                                                                                                     |          |
| max deflection 350 μrad                                                                                   |          |
| 22/0m/ax distance target-beam axis ~13mm/Galluccio                                                        |          |

Sketch of the internal solid target

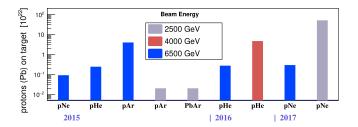


- · movable target with pneumatic system
- · 2 valves on each side
- · possibility to have several target types
- First study of single-crystal experiment at IP2 by F. Galluccio and W. Scandale
- · Integration of a movable internal solid target with ALICE under study by K. Pressard

J.P. Lansberg (IPNO)

The AFTER@LHC programme

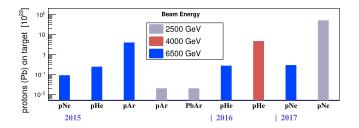
[Slide from S. Redealli, PBC workshop] October 4, 2018 9 / 21


## SMOG: more than a demonstrator ?

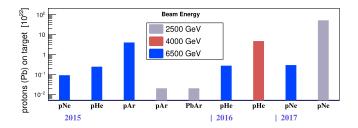
| J.P. Lansberg | (IPNO) |
|---------------|--------|
|---------------|--------|

The AFTER@LHC programme

▲ ■ ▶ ▲ ■ ▶ ■ → ○ < ○</li>
 October 4, 2018 10 / 21

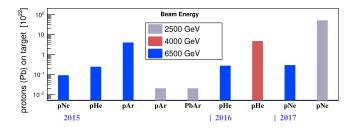

イロト イヨト イヨト イヨト




• Physics results now flowing in : Talk by E. Maurice on Monday & F. Fleuret this morning Limited statistical complex (400 L(u)) and no to U hosping rate  $C_{\rm env} = 7 \, {\rm mb}^{-1}$ 

· Limited statistical samples (400  $J/\psi$ ) and no *pH* baseline yet;  $\mathcal{L}_{pHe} \simeq 7 \text{ nb}^{-1}$ 

イロト イポト イヨト イヨ




- Physics results now flowing in : Talk by E. Maurice on Monday & F. Fleuret this morning
- Limited statistical samples (400  $J/\psi$ ) and no *pH* baseline yet;  $\mathcal{L}_{pHe} \simeq 7 \text{ nb}^{-1}$
- Plan to install a storage cell [SMOG2] to increase the target local density
- Different options discussed for future LHCb upgrades: No decision taken yet
- However decision for the installation of a vacuum valve during LS2.



- Physics results now flowing in : Talk by E. Maurice on Monday & F. Fleuret this morning
- Limited statistical samples (400  $J/\psi$ ) and no *pH* baseline yet;  $\mathcal{L}_{pHe} \simeq 7 \text{ nb}^{-1}$
- Plan to install a storage cell [SMOG2] to increase the target local density
- Different options discussed for future LHCb upgrades: No decision taken yet
- However decision for the installation of a vacuum valve during LS2.

#### Can ALICE catch up ? Certainly !



Physics results now flowing in : Talk by E. Maurice on Monday & F. Fleuret this morning

- Limited statistical samples (400  $J/\psi$ ) and no *pH* baseline yet;  $\mathcal{L}_{pHe} \simeq 7 \text{ nb}^{-1}$
- Plan to install a storage cell [SMOG2] to increase the target local density
- · Different options discussed for future LHCb upgrades: No decision taken yet
- However decision for the installation of a vacuum valve during LS2.

#### Can ALICE catch up ? Certainly !

My suggestion: slightly modify **during LS2** the beampipe to have a small vacuum zone between 2 valves [usable by a solid-target+crystal, a wire target or a gas target à la SMOG]

#### [w/o detector constraints]

|                     |               |                              | Beam                                |                     |                                           |                                              |            |                     |  |  |
|---------------------|---------------|------------------------------|-------------------------------------|---------------------|-------------------------------------------|----------------------------------------------|------------|---------------------|--|--|
| Target              |               |                              |                                     | Pb                  |                                           |                                              |            |                     |  |  |
|                     |               |                              | L                                   | $\Delta t$          | ∫⊥                                        | L                                            | $\Delta t$ | ∫L                  |  |  |
|                     |               |                              | [cm <sup>-2</sup> s <sup>-1</sup> ] | [s]                 | [nb <sup>-1</sup> ]                       | [cm <sup>-2</sup> s <sup>-1</sup> ]          | [s]        | [nb <sup>-1</sup> ] |  |  |
|                     | SMOG          | He, Ne, Ar                   | 5.8 ×10 <sup>29</sup>               | 2.5×10 <sup>5</sup> | 145                                       | 7.4 ×10 <sup>25</sup>                        | 106        | 0.074               |  |  |
|                     |               | H↑                           | 4.3 ×10 <sup>30</sup>               | 107                 | 4.3 ×10 <sup>4</sup>                      | 5.6 ×10 <sup>26</sup>                        | 106        | 0.56                |  |  |
|                     | Gas-Jet       | H <sub>2</sub>               | $3.6 \ge (10^{33} - 10^{34})$       | 107                 | 3.6 x (10 <sup>7</sup> -10 <sup>8</sup> ) | 4.66 x (10 <sup>29</sup> -10 <sup>30</sup> ) | $10^{6}$   | 466-4660            |  |  |
|                     | Gas-Jet       | DÎ                           | $4.3 \times 10^{30}$                | 107                 | $4.3 \times 10^{4}$                       | 5.6×10 <sup>26</sup>                         | $10^{6}$   | 0.56                |  |  |
| Internal gas target |               | <sup>3</sup> He <sup>↑</sup> | 3.6×10 <sup>32</sup>                | 107                 | 3.6×10 <sup>6</sup>                       | 4.66 ×10 <sup>28</sup>                       | 106        | 47                  |  |  |
| Internal gas target |               | H <sup>↑</sup>               | 0.92 ×10 <sup>33</sup>              | 107                 | 9.2×10 <sup>6</sup>                       | 1.18×10 <sup>29</sup>                        | 106        | 118                 |  |  |
|                     | Storage Cell  | H <sub>2</sub>               | 5.8 ×10 <sup>33</sup>               | 107                 | 5.8 ×107                                  | 7.5 ×10 <sup>29</sup>                        | 106        | 750                 |  |  |
|                     |               | DÎ                           | 1.1 ×10 <sup>33</sup>               | 107                 | 1.1 ×107                                  | $1.4 \times 10^{29}$                         | $10^{6}$   | 140                 |  |  |
|                     |               | <sup>3</sup> He <sup>↑</sup> | 3.7 ×10 <sup>33</sup>               | 107                 | 3.7 ×10 <sup>7</sup>                      | 4.7 ×10 <sup>29</sup>                        | 106        | 474                 |  |  |
|                     |               | Xe                           | 2.34 ×1032                          | 107                 | 2.34 ×10 <sup>6</sup>                     | $3.0 \times 10^{28}$                         | $10^{6}$   | 30                  |  |  |
| Internal solid      | Wire          | С                            | 2.8 ×10 <sup>30</sup>               | 107                 | $2.8 \times 10^4$                         | 5.6 ×10 <sup>26</sup>                        | 106        | 0.56                |  |  |
| target with         | Target        | Ti                           | $1.4 \times 10^{30}$                | 107                 | $1.4 \times 10^{4}$                       | $2.8 \times 10^{26}$                         | 106        | 0.28                |  |  |
| beam halo           | (0.5 mm)      | W                            | $1.6 \times 10^{30}$                | 107                 | $1.6 \times 10^{4}$                       | $3.1 \times 10^{26}$                         | $10^{6}$   | 0.31                |  |  |
|                     | E1039         | $NH_3^{\uparrow}$            | 7.2 ×10 <sup>31</sup>               | 107                 | 7.2×10 <sup>5</sup>                       | 1.4 ×10 <sup>28</sup>                        | 106        | 14                  |  |  |
|                     |               | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
| Beam splitting      | Unpolarised   | С                            | 2.8 ×10 <sup>31</sup>               | 107                 | 2.8 ×10 <sup>5</sup>                      | 5.6 ×10 <sup>27</sup>                        | 106        | 5.6                 |  |  |
|                     | solid         | Ti                           | 1.4×10 <sup>31</sup>                | 107                 | 1.4×10 <sup>5</sup>                       | 2.8 ×10 <sup>27</sup>                        | 106        | 2.8                 |  |  |
|                     | target (5 mm) | W                            | 1.6×10 <sup>31</sup>                | 107                 | 1.6×10 <sup>5</sup>                       | 3.1 ×10 <sup>27</sup>                        | $10^{6}$   | 3.1                 |  |  |
| Beam extraction     | E1039         | $NH_3^{\uparrow}$            | 7.2×10 <sup>31</sup>                | 107                 | 7.2×10 <sup>5</sup>                       | 1.4 ×10 <sup>28</sup>                        | 106        | 14                  |  |  |
|                     | E1039         | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
|                     | COMPASS       | $NH_3^{\uparrow}$            | 1.0×10 <sup>33</sup>                | 107                 | 1.0×107                                   | 2.0×10 <sup>29</sup>                         | 106        | 200                 |  |  |
|                     | COMPASS       | butanol ↑                    | 2.7 ×10 <sup>32</sup>               | 107                 | $2.7 \times 10^{6}$                       | 5.3 ×10 <sup>28</sup>                        | $10^{6}$   | 53                  |  |  |

NB: The storage-cell figures correspond to a 1-m long cell with a coating with the same performances as the HERMES-cell coating (a priori not compliant with the LHC requirement).

#### [w/o detector constraints]

|                     |               |                              | Beam                                        |                     |                                           |                                              |            |                     |  |  |
|---------------------|---------------|------------------------------|---------------------------------------------|---------------------|-------------------------------------------|----------------------------------------------|------------|---------------------|--|--|
| Target              |               |                              |                                             | Pb                  |                                           |                                              |            |                     |  |  |
|                     |               |                              | L                                           | $\Delta t$          | ∫⊥                                        | L                                            | $\Delta t$ | ∫£                  |  |  |
|                     |               |                              | $[cm^{-2}s^{-1}]$                           | [s]                 | [nb <sup>-1</sup> ]                       | $[cm^{-2}s^{-1}]$                            | [s]        | [nb <sup>-1</sup> ] |  |  |
|                     | SMOG          | He, Ne, Ar                   | 5.8 ×10 <sup>29</sup>                       | $2.5 \times 10^{5}$ | 145                                       | 7.4 ×10 <sup>25</sup>                        | 106        | 0.074               |  |  |
|                     |               | H↑                           | 4.3 ×10 <sup>30</sup>                       | 107                 | 4.3 ×10 <sup>4</sup>                      | 5.6×10 <sup>26</sup>                         | 106        | 0.56                |  |  |
|                     | Gas-Jet       | H <sub>2</sub>               | 3.6 x (10 <sup>33</sup> -10 <sup>34</sup> ) | 107                 | 3.6 x (10 <sup>7</sup> -10 <sup>8</sup> ) | 4.66 x (10 <sup>29</sup> -10 <sup>30</sup> ) | $10^{6}$   | 466-4660            |  |  |
|                     | Gas-Jet       | $D^{\uparrow}$               | 4.3 ×10 <sup>30</sup>                       | 107                 | $4.3 \times 10^{4}$                       | $5.6 \times 10^{26}$                         | $10^{6}$   | 0.56                |  |  |
| Internal gas target |               | <sup>3</sup> He <sup>↑</sup> | 3.6 ×10 <sup>32</sup>                       | 107                 | $3.6 \times 10^{6}$                       | $4.66 \times 10^{28}$                        | $10^{6}$   | 47                  |  |  |
| internai gas target |               | H↑                           | 0.92 ×10 <sup>33</sup>                      | 107                 | 9.2×10 <sup>6</sup>                       | 1.18×10 <sup>29</sup>                        | 106        | 118                 |  |  |
|                     |               | H <sub>2</sub>               | 5.8 ×10 <sup>33</sup>                       | 107                 | 5.8 ×10 <sup>7</sup>                      | 7.5 ×10 <sup>29</sup>                        | $10^{6}$   | 750                 |  |  |
|                     | Storage Cell  | $D^{\uparrow}$               | 1.1 ×10 <sup>33</sup>                       | 107                 | 1.1 ×10 <sup>7</sup>                      | $1.4 \times 10^{29}$                         | $10^{6}$   | 140                 |  |  |
|                     |               | <sup>3</sup> He <sup>↑</sup> | 3.7 ×1033                                   | 107                 | 3.7 ×107                                  | 4.7 ×10 <sup>29</sup>                        | $10^{6}$   | 474                 |  |  |
|                     |               | Xe                           | $2.34 \times 10^{32}$                       | 107                 | $2.34 \times 10^{6}$                      | $3.0 \times 10^{28}$                         | $10^{6}$   | 30                  |  |  |
| Internal solid      | Wire          | С                            | 2.8 ×10 <sup>30</sup>                       | 107                 | $2.8 \times 10^4$                         | 5.6×10 <sup>26</sup>                         | 106        | 0.56                |  |  |
| target with         | Target        | Ti                           | $1.4 \times 10^{30}$                        | 107                 | $1.4 \times 10^{4}$                       | $2.8 \times 10^{26}$                         | $10^{6}$   | 0.28                |  |  |
| beam halo           | (0.5 mm)      | W                            | $1.6 \times 10^{30}$                        | 107                 | $1.6 \times 10^4$                         | $3.1 \times 10^{26}$                         | $10^{6}$   | 0.31                |  |  |
|                     | E1039         | $NH_3^{\uparrow}$            | 7.2 ×10 <sup>31</sup>                       | 107                 | 7.2×10 <sup>5</sup>                       | 1.4 ×10 <sup>28</sup>                        | 106        | 14                  |  |  |
|                     |               | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                        | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
| Beam splitting      | Unpolarised   | С                            | 2.8 ×10 <sup>31</sup>                       | 107                 | 2.8 ×10 <sup>5</sup>                      | 5.6 ×10 <sup>27</sup>                        | 106        | 5.6                 |  |  |
|                     | solid         | Ti                           | $1.4 \times 10^{31}$                        | 107                 | $1.4 \times 10^{5}$                       | $2.8 \times 10^{27}$                         | $10^{6}$   | 2.8                 |  |  |
|                     | target (5 mm) | W                            | 1.6 ×10 <sup>31</sup>                       | 107                 | 1.6×10 <sup>5</sup>                       | $3.1 \times 10^{27}$                         | $10^{6}$   | 3.1                 |  |  |
| Beam extraction     | E1039         | $NH_3^{\uparrow}$            | 7.2 ×10 <sup>31</sup>                       | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | 106        | 14                  |  |  |
|                     | E1039         | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                        | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
|                     | COMPASS       | $NH_3^{\uparrow}$            | 1.0×10 <sup>33</sup>                        | 107                 | 1.0×10 <sup>7</sup>                       | 2.0 ×10 <sup>29</sup>                        | 106        | 200                 |  |  |
|                     | COMPASS       | butanol ↑                    | $2.7 \times 10^{32}$                        | 107                 | $2.7 \times 10^{6}$                       | 5.3 ×10 <sup>28</sup>                        | $10^{6}$   | 53                  |  |  |

NB: The storage-cell figures correspond to a 1-m long cell with a coating with the same performances as the HERMES-cell coating (a priori not compliant with the LHC requirement), a = b = b = b = b

#### [w/o detector constraints]

|                     |               |                              | Beam                                        |                     |                                           |                                              |            |                     |  |  |
|---------------------|---------------|------------------------------|---------------------------------------------|---------------------|-------------------------------------------|----------------------------------------------|------------|---------------------|--|--|
| Target              |               |                              |                                             | Pb                  |                                           |                                              |            |                     |  |  |
|                     |               |                              | L                                           | $\Delta t$          | ∫L                                        | L                                            | $\Delta t$ | ∫£                  |  |  |
|                     |               |                              | $[cm^{-2}s^{-1}]$                           | [s]                 | [nb <sup>-1</sup> ]                       | $[cm^{-2}s^{-1}]$                            | [s]        | [nb <sup>-1</sup> ] |  |  |
|                     | SMOG          | He, Ne, Ar                   | 5.8 ×10 <sup>29</sup>                       | $2.5 \times 10^{5}$ | 145                                       | 7.4 ×10 <sup>25</sup>                        | 106        | 0.074               |  |  |
|                     |               | H                            | 4.3 ×10 <sup>30</sup>                       | 107                 | $4.3 \times 10^{4}$                       | 5.6×10 <sup>26</sup>                         | 106        | 0.56                |  |  |
|                     | Gas-Jet       | H <sub>2</sub>               | 3.6 x (10 <sup>33</sup> -10 <sup>34</sup> ) | 107                 | 3.6 x (10 <sup>7</sup> -10 <sup>8</sup> ) | 4.66 x (10 <sup>29</sup> -10 <sup>30</sup> ) | 106        | 466-4660            |  |  |
|                     | Gas-Jei       | $D^{\uparrow}$               | $4.3 \times 10^{30}$                        | 107                 | $4.3 \times 10^{4}$                       | $5.6 \times 10^{26}$                         | $10^{6}$   | 0.56                |  |  |
| Internal gas target |               | <sup>3</sup> He <sup>↑</sup> | 3.6×10 <sup>32</sup>                        | 107                 | $3.6 \times 10^{6}$                       | $4.66 \times 10^{28}$                        | $10^{6}$   | 47                  |  |  |
| internai gas target |               | H                            | 0.92 ×10 <sup>33</sup>                      | 107                 | 9.2×10 <sup>6</sup>                       | 1.18×10 <sup>29</sup>                        | 106        | 118                 |  |  |
|                     |               | H <sub>2</sub>               | 5.8 ×10 <sup>33</sup>                       | 107                 | $5.8 \times 10^{7}$                       | $7.5 \times 10^{29}$                         | $10^{6}$   | 750                 |  |  |
|                     | Storage Cell  | $D^{\uparrow}$               | $1.1 \times 10^{33}$                        | 107                 | $1.1 \times 10^{7}$                       | $1.4 \times 10^{29}$                         | $10^{6}$   | 140                 |  |  |
|                     |               | <sup>3</sup> He <sup>↑</sup> | $3.7 \times 10^{33}$                        | 107                 | $3.7 \times 10^{7}$                       | $4.7 \times 10^{29}$                         | $10^{6}$   | 474                 |  |  |
|                     |               | Xe                           | $2.34 \times 10^{32}$                       | 107                 | $2.34 \times 10^{6}$                      | $3.0 \times 10^{28}$                         | $10^{6}$   | 30                  |  |  |
| Internal solid      | Wire          | С                            | 2.8 ×10 <sup>30</sup>                       | 107                 | $2.8 \times 10^{4}$                       | $5.6 \times 10^{26}$                         | 106        | 0.56                |  |  |
| target with         | Target        | Ti                           | $1.4 \times 10^{30}$                        | 107                 | $1.4 \times 10^{4}$                       | $2.8 \times 10^{26}$                         | $10^{6}$   | 0.28                |  |  |
| beam halo           | (0.5 mm)      | W                            | $1.6 \times 10^{30}$                        | 107                 | $1.6 \times 10^{4}$                       | $3.1 \times 10^{26}$                         | $10^{6}$   | 0.31                |  |  |
|                     | E1039         | NH <sup>1</sup> <sub>3</sub> | 7.2×10 <sup>31</sup>                        | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | 106        | 14                  |  |  |
|                     |               | ND <sub>3</sub>              | $7.2 \times 10^{31}$                        | 107                 | $7.2 \times 10^{5}$                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
| Beam splitting      | Unpolarised   | С                            | 2.8 ×10 <sup>31</sup>                       | 107                 | 2.8 ×10 <sup>5</sup>                      | 5.6 ×10 <sup>27</sup>                        | 106        | 5.6                 |  |  |
|                     | solid         | Ti                           | $1.4 \times 10^{31}$                        | 107                 | $1.4 \times 10^{5}$                       | $2.8 \times 10^{27}$                         | $10^{6}$   | 2.8                 |  |  |
|                     | target (5 mm) | W                            | $1.6 \times 10^{31}$                        | 107                 | $1.6 \times 10^{5}$                       | $3.1 \times 10^{27}$                         | $10^{6}$   | 3.1                 |  |  |
| Beam extraction     | E1039         | NH <sup>1</sup> <sub>3</sub> | 7.2×10 <sup>31</sup>                        | 107                 | 7.2 ×10 <sup>5</sup>                      | $1.4 \times 10^{28}$                         | 106        | 14                  |  |  |
|                     | E1039         | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                        | 107                 | $7.2 \times 10^{5}$                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
|                     | COMPASS       | NH                           | 1.0×10 <sup>33</sup>                        | 107                 | $1.0 \times 10^{7}$                       | 2.0×10 <sup>29</sup>                         | 106        | 200                 |  |  |
|                     | COMPASS       | butanol ↑                    | $2.7 \times 10^{32}$                        | 107                 | $2.7 \times 10^{6}$                       | $5.3 \times 10^{28}$                         | $10^{6}$   | 53                  |  |  |

NB: The storage-cell figures correspond to a 1-m long cell with a coating with the same performances as the HERMES-cell coating (a priori not compliant with the LHC requirement), a = b = b = b = b

#### [w/o detector constraints]

|                     |               |                              | Beam                                        |                     |                                           |                                              |                 |                     |  |  |
|---------------------|---------------|------------------------------|---------------------------------------------|---------------------|-------------------------------------------|----------------------------------------------|-----------------|---------------------|--|--|
| Target              |               |                              |                                             | Pb                  |                                           |                                              |                 |                     |  |  |
|                     |               |                              | L                                           | $\Delta t$          | ∫L                                        | L                                            | $\Delta t$      | ∫£                  |  |  |
|                     |               |                              | $[cm^{-2}s^{-1}]$                           | [s]                 | [nb <sup>-1</sup> ]                       | $[cm^{-2}s^{-1}]$                            | [s]             | [nb <sup>-1</sup> ] |  |  |
|                     | SMOG          | He, Ne, Ar                   | 5.8 ×10 <sup>29</sup>                       | $2.5 \times 10^{5}$ | 145                                       | 7.4 ×10 <sup>25</sup>                        | 106             | 0.074               |  |  |
|                     |               | ΗÎ                           | 4.3 ×10 <sup>30</sup>                       | 107                 | $4.3 \times 10^{4}$                       | 5.6×10 <sup>26</sup>                         | 106             | 0.56                |  |  |
|                     | Gas-Jet       | H <sub>2</sub>               | 3.6 x (10 <sup>33</sup> -10 <sup>34</sup> ) | 107                 | 3.6 x (10 <sup>7</sup> -10 <sup>8</sup> ) | 4.66 x (10 <sup>29</sup> -10 <sup>30</sup> ) | 10 <sup>6</sup> | 466-4660            |  |  |
|                     | Gas-Jet       | $D^{\uparrow}$               | 4.3 ×10 <sup>30</sup>                       | 107                 | $4.3 \times 10^{4}$                       | $5.6 \times 10^{26}$                         | $10^{6}$        | 0.56                |  |  |
| Internal gas target |               | <sup>3</sup> He <sup>†</sup> | 3.6×10 <sup>32</sup>                        | 107                 | 3.6×10 <sup>6</sup>                       | $4.66 \times 10^{28}$                        | $10^{6}$        | 47                  |  |  |
| internai gas target |               | H↑                           | 0.92 ×10 <sup>33</sup>                      | 107                 | 9.2×10 <sup>6</sup>                       | 1.18×10 <sup>29</sup>                        | 106             | 118                 |  |  |
|                     |               | H <sub>2</sub>               | 5.8 ×10 <sup>33</sup>                       | 107                 | $5.8 \times 10^{7}$                       | 7.5 ×10 <sup>29</sup>                        | 106             | 750                 |  |  |
|                     | Storage Cell  | $D^{\uparrow}$               | $1.1 \times 10^{33}$                        | 107                 | $1.1 \times 10^{7}$                       | $1.4 \times 10^{29}$                         | $10^{6}$        | 140                 |  |  |
|                     |               | <sup>3</sup> He <sup>†</sup> | $3.7 \times 10^{33}$                        | 107                 | $3.7 \times 10^{7}$                       | $4.7 \times 10^{29}$                         | $10^{6}$        | <mark>474</mark>    |  |  |
|                     |               | Xe                           | $2.34 \times 10^{32}$                       | 107                 | $2.34 \times 10^{6}$                      | $3.0 \times 10^{28}$                         | $10^{6}$        | 30                  |  |  |
| Internal solid      | Wire          | С                            | 2.8 ×10 <sup>30</sup>                       | 107                 | $2.8 \times 10^{4}$                       | 5.6×10 <sup>26</sup>                         | 106             | 0.56                |  |  |
| target with         | Target        | Ti                           | $1.4 \times 10^{30}$                        | 107                 | $1.4 \times 10^{4}$                       | $2.8 \times 10^{26}$                         | $10^{6}$        | 0.28                |  |  |
| beam halo           | (0.5 mm)      | W                            | $1.6 \times 10^{30}$                        | 107                 | $1.6 \times 10^{4}$                       | $3.1 \times 10^{26}$                         | $10^{6}$        | 0.31                |  |  |
|                     | E1039         | $NH_3^{\uparrow}$            | 7.2×10 <sup>31</sup>                        | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | $10^{6}$        | 14                  |  |  |
|                     |               | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                        | 107                 | $7.2 \times 10^{5}$                       | $1.4 \times 10^{28}$                         | $10^{6}$        | 14                  |  |  |
| Beam splitting      | Unpolarised   | С                            | 2.8 ×10 <sup>31</sup>                       | 107                 | 2.8 ×10 <sup>5</sup>                      | 5.6 ×10 <sup>27</sup>                        | 106             | 5.6                 |  |  |
|                     | solid         | Ti                           | $1.4 \times 10^{31}$                        | 107                 | $1.4 \times 10^{5}$                       | $2.8 \times 10^{27}$                         | $10^{6}$        | 2.8                 |  |  |
|                     | target (5 mm) | W                            | 1.6×10 <sup>31</sup>                        | 107                 | $1.6 \times 10^{5}$                       | 3.1 ×10 <sup>27</sup>                        | $10^{6}$        | 3.1                 |  |  |
| Beam extraction     | E1039         | $NH_3^{\uparrow}$            | 7.2×10 <sup>31</sup>                        | 107                 | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | 106             | 14                  |  |  |
|                     | E1039         | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                        | 107                 | $7.2 \times 10^{5}$                       | $1.4 \times 10^{28}$                         | $10^{6}$        | 14                  |  |  |
|                     | COMPASS       | $NH_3^{\uparrow}$            | 1.0×10 <sup>33</sup>                        | 107                 | $1.0 \times 10^{7}$                       | 2.0 ×10 <sup>29</sup>                        | 10 <sup>6</sup> | 200                 |  |  |
|                     | COMPASS       | butanol ↑                    | $2.7 \times 10^{32}$                        | 107                 | $2.7 \times 10^{6}$                       | 5.3 ×10 <sup>28</sup>                        | $10^{6}$        | 53                  |  |  |

NB: The storage-cell figures correspond to a 1-m long cell with a coating with the same performances as the HERMES-cell coating (a priori not compliant with the LHC requirement), a = b = b = b = b

#### [w/o detector constraints]

|                     |               |                              | Beam                                        |            |                                           |                                              |            |                     |  |  |
|---------------------|---------------|------------------------------|---------------------------------------------|------------|-------------------------------------------|----------------------------------------------|------------|---------------------|--|--|
| Target              |               |                              |                                             | Pb         |                                           |                                              |            |                     |  |  |
|                     |               |                              | L                                           | $\Delta t$ | ∫L                                        | L                                            | $\Delta t$ | ∫£                  |  |  |
|                     |               |                              | $[cm^{-2}s^{-1}]$                           | [s]        | [nb <sup>-1</sup> ]                       | $[cm^{-2}s^{-1}]$                            | [s]        | [nb <sup>-1</sup> ] |  |  |
| SMOG (He, Ne, Ar)   |               | 5.8 ×10 <sup>29</sup>        | $2.5 \times 10^{5}$                         | 145        | 7.4 ×10 <sup>25</sup>                     | 106                                          | 0.074      |                     |  |  |
|                     |               | $H^{\uparrow}$               | 4.3 ×10 <sup>30</sup>                       | 107        | $4.3 \times 10^{4}$                       | 5.6×10 <sup>26</sup>                         | 106        | 0.56                |  |  |
|                     | Gas-Jet       | $H_2$                        | 3.6 x (10 <sup>33</sup> -10 <sup>34</sup> ) | 107        | 3.6 x (10 <sup>7</sup> -10 <sup>8</sup> ) | 4.66 x (10 <sup>29</sup> -10 <sup>30</sup> ) | $10^{6}$   | 466-4660            |  |  |
|                     | Cas-Jei       | $D^{\uparrow}$               | $4.3 \times 10^{30}$                        | 107        | $4.3 \times 10^{4}$                       | $5.6 \times 10^{26}$                         | $10^{6}$   | 0.56                |  |  |
| Internal gas target |               | <sup>3</sup> He <sup>↑</sup> | $3.6 \times 10^{32}$                        | 107        | $3.6 \times 10^{6}$                       | $4.66 \times 10^{28}$                        | $10^{6}$   | 47                  |  |  |
| internai gas target |               | H↑                           | 0.92 ×10 <sup>33</sup>                      | 107        | 9.2×10 <sup>6</sup>                       | 1.18×10 <sup>29</sup>                        | 106        | 118                 |  |  |
|                     |               | $H_2$                        | 5.8 ×10 <sup>33</sup>                       | 107        | $5.8 \times 10^{7}$                       | 7.5 ×10 <sup>29</sup>                        | $10^{6}$   | 750                 |  |  |
|                     | Storage Cell  | $D^{\uparrow}$               | 1.1 ×10 <sup>33</sup>                       | 107        | $1.1 \times 10^{7}$                       | $1.4 \times 10^{29}$                         | $10^{6}$   | 140                 |  |  |
|                     |               | <sup>3</sup> He <sup>↑</sup> | $3.7 \times 10^{33}$                        | 107        | $3.7 \times 10^{7}$                       | 4.7 ×10 <sup>29</sup>                        | $10^{6}$   | 474                 |  |  |
|                     |               | Xe                           | $2.34 \times 10^{32}$                       | 107        | $2.34 \times 10^{6}$                      | $3.0 \times 10^{28}$                         | $10^{6}$   | 30                  |  |  |
| Internal solid      | Wire          | С                            | 2.8 ×10 <sup>30</sup>                       | 107        | $2.8 \times 10^{4}$                       | 5.6×10 <sup>26</sup>                         | 106        | 0.56                |  |  |
| target with         | Target        | Ti                           | $1.4 \times 10^{30}$                        | 107        | $1.4 \times 10^{4}$                       | $2.8 \times 10^{26}$                         | $10^{6}$   | 0.28                |  |  |
| beam halo           | (0.5 mm)      | W                            | 1.6×10 <sup>30</sup>                        | 107        | $1.6 \times 10^{4}$                       | $3.1 \times 10^{26}$                         | 106        | 0.31                |  |  |
|                     | E1039         | $NH_3^{\uparrow}$            | 7.2×10 <sup>31</sup>                        | 107        | 7.2×10 <sup>5</sup>                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
|                     |               | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                        | 107        | $7.2 \times 10^{5}$                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
| Beam splitting      | Unpolarised   | С                            | 2.8 ×10 <sup>31</sup>                       | 107        | 2.8 ×10 <sup>5</sup>                      | 5.6 ×10 <sup>27</sup>                        | 106        | 5.6                 |  |  |
|                     | solid         | Ti                           | $1.4 \times 10^{31}$                        | 107        | $1.4 \times 10^{5}$                       | $2.8 \times 10^{27}$                         | $10^{6}$   | 2.8                 |  |  |
|                     | target (5 mm) | W                            | 1.6×10 <sup>31</sup>                        | 107        | 1.6×10 <sup>5</sup>                       | 3.1 ×10 <sup>27</sup>                        | $10^{6}$   | 3.1                 |  |  |
| Beam extraction     | E1039         | $NH_3^{\uparrow}$            | 7.2×10 <sup>31</sup>                        | 107        | 7.2×10 <sup>5</sup>                       | 1.4 ×10 <sup>28</sup>                        | $10^{6}$   | 14                  |  |  |
|                     | E1039         | $ND_3^{\uparrow}$            | $7.2 \times 10^{31}$                        | 107        | $7.2 \times 10^{5}$                       | $1.4 \times 10^{28}$                         | $10^{6}$   | 14                  |  |  |
|                     | COMPASS       | $NH_3^{\uparrow}$            | 1.0×10 <sup>33</sup>                        | 107        | 1.0×10 <sup>7</sup>                       | 2.0 ×10 <sup>29</sup>                        | 106        | 200                 |  |  |
|                     | COMPASS       | butanol ↑                    | $2.7 \times 10^{32}$                        | 107        | $2.7 \times 10^{6}$                       | 5.3 ×10 <sup>28</sup>                        | $10^{6}$   | 53                  |  |  |

NB: The storage-cell figures correspond to a 1-m long cell with a coating with the same performances as the HERMES-cell coating (a priori not compliant with the LHC requirement), a = b = b = b = b

[w detector constraints]

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 12 / 21

æ

イロト イヨト イヨト イヨト

[w detector constraints]

#### LHCb 'possible'

**Assumption:** Rates only constrained by the DAQ (40 MHz for *pp* coll.)  $\mathcal{L}_{pH_2/H^{\dagger}}$ : 10 fb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{pXe}$ : 300 pb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 30 nb<sup>-1</sup> yr<sup>-1</sup>

#### LHCb 'possible'

**Assumption:** Rates only constrained by the DAQ (40 MHz for *pp* coll.)  $\mathcal{L}_{pH_2/H^{\dagger}}$ : 10 fb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{pXe}$ : 300 pb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 30 nb<sup>-1</sup> yr<sup>-1</sup>

#### LHCb 'SMOG2' baseline for Run3

**Assumption:** Storage cell installed, very parasitic mode  $\mathcal{L}_{p \text{ beam}}$ : 30 pb<sup>-1</sup> (on H,D or Ar);  $\mathcal{L}_{Pb \text{ beam}}$ : 5 nb<sup>-1</sup> (on Ar)

#### LHCb 'possible'

Assumption: Rates only constrained by the DAQ (40 MHz for *pp* coll.)  $\mathcal{L}_{pH_2/H^{\uparrow}}$ : 10 fb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{pXe}$ : 300 pb<sup>-1</sup> yr<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 30 nb<sup>-1</sup> yr<sup>-1</sup>

#### LHCb 'SMOG2' baseline for Run3

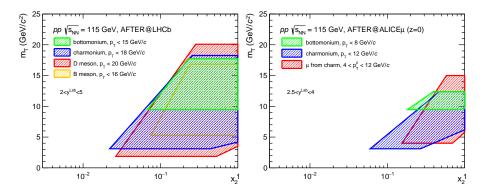
**Assumption:** Storage cell installed, very parasitic mode  $\mathcal{L}_{p \text{ beam}}$ : 30 pb<sup>-1</sup> (on H,D or Ar);  $\mathcal{L}_{Pb \text{ beam}}$ : 5 nb<sup>-1</sup> (on Ar)

#### ALICE 'possible' from Run4\*

**Assumption:** Readout rate: 50 kHz in PbPb coll. and possibly up to 1 MHz in *pp* and *p*A coll. With internal gas target:  $\mathcal{L}_{pH_2/H^{\dagger}}$ : 250 pb<sup>-1</sup>;  $\mathcal{L}_{PbXe}$ : 8 nb<sup>-1</sup> With beam splitting and solid target:  $\mathcal{L}_{pW}$ : 6 pb<sup>-1</sup>;  $\mathcal{L}_{PbW}$ : 3 nb<sup>-1</sup>

\* : Unless valves can be installed during LS2 (see my suggestion above)

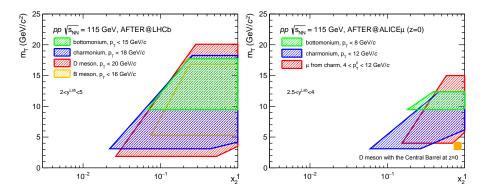
# Part IV


# Examples of Heavy-Ion Studies

J.P. Lansberg (IPNO)

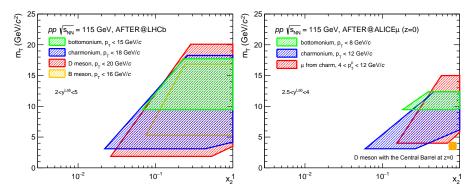
The AFTER@LHC programme

October 4, 2018 13 / 21


イロト イポト イヨト イヨ

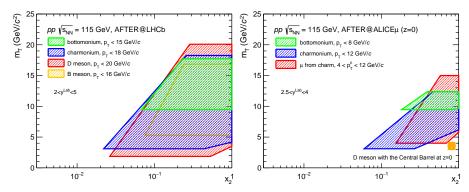


The AFTER@LHC programme


October 4, 2018 14 / 21

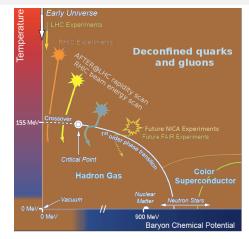
• □ ▶ • • □ ▶ • • □ ▶




The AFTER@LHC programme

October 4, 2018 14 / 21



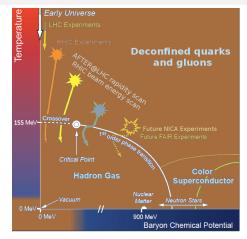

ALICE could also cover  $\eta_{\text{Lab}} \sim 1 - 2$  for quarkonia into dileptons with one muon in the muon arm and another in the central barrel

[done for UPCs in the collider mode, see C. Mayer at QM 2018]



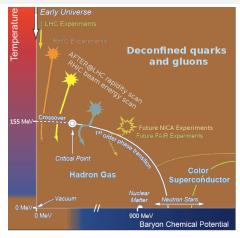
ALICE could also cover  $\eta_{\text{Lab}} \sim 1 - 2$  for quarkonia into dileptons with one muon in the muon arm and another in the central barrel

[done for UPCs in the collider mode, see C. Mayer at QM 2018] NB: The coverage depends on the target position



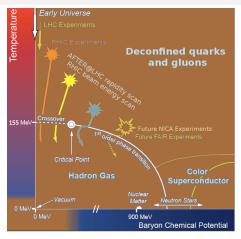

J.P. Lansberg (IPNO)

The AFTER@LHC programme


October 4, 2018 15 / 21

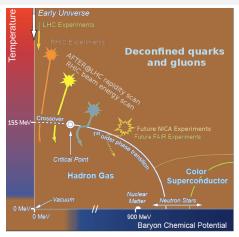
• Energy domain: between SPS and RHIC



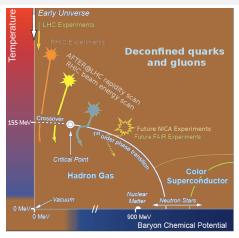

October 4, 2018 15 / 21

- Energy domain: between SPS and RHIC
- Rapidity scan to scan through μ<sub>B</sub> & T with a good PID (LHCb and ALICE)




イロト イポト イヨト イヨ

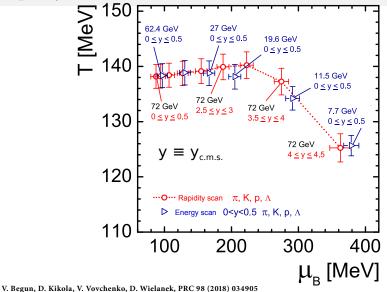
- Energy domain: between SPS and RHIC
- **Rapidity scan** to scan through  $\mu_B \& T$  with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states (e.g. χ<sub>c,b</sub>, η<sub>c</sub>) and on open charm and beauty




イロト イポト イヨト イヨ

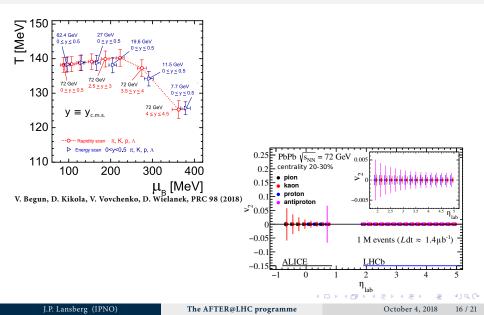
- Energy domain: between SPS and RHIC
- Rapidity scan to scan through  $\mu_B \& T$  with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states
   (e.g. χ<sub>c,b</sub>, η<sub>c</sub>) and on open charm and beauty
- FoMs for χ<sub>c,b</sub> and η<sub>c</sub> to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations




- Energy domain: between SPS and RHIC
- **Rapidity scan** to scan through  $\mu_B \& T$  with a good PID (LHCb and ALICE)
- At backward rapidities, lower backgrounds
- Handle on more quarkonium states (e.g. χ<sub>c,b</sub>, η<sub>c</sub>) and on open charm and beauty
- FoMs for χ<sub>c,b</sub> and η<sub>c</sub> to be done in cooperation with the LHCb and ALICE collaborations with advanced simulations



Even with 1 billion  $J/\psi$ 's, the *direct*  $J/\psi$  yield will remain unprecise by 30 % !


October 4, 2018 15 / 21

Rapidity scan



October 4, 2018 16 / 21

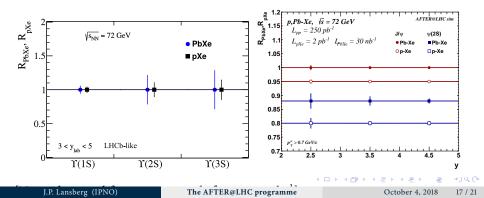
# Rapidity scan



B.Trzeciak et al.Few-Body Syst (2017) 58:148

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

B.Trzeciak et al.Few-Body Syst (2017) 58:148


• Like for nPDF studies (see later), multiple quarkonium studies are needed

B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline

B.Trzeciak et al.Few-Body Syst (2017) 58:148

- Like for nPDF studies (see later), multiple quarkonium studies are needed
- Clear need for a reliable *pA* baseline
- Statistical-uncertainty projections (accounting for background subtraction)



# Part V

# One example of Cold Nuclear Matter Study

J.P. Lansberg (IPNO)

The AFTER@LHC programme

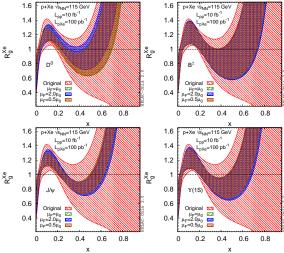
October 4, 2018 18 / 21

Talk by A. Kusina on Wednesday

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 19 / 21


크

イロト イヨト イヨト イヨト

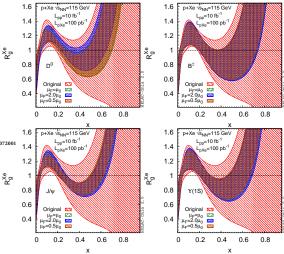
# • First extremely promising projections

[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist  $\stackrel{\infty}{\searrow}_{0}$ there. Projection done assuming that other nuclear effect are under control.]

#### Talk by A. Kusina on Wednesday



イロト イポト イヨト イヨ


• First extremely promising projections

[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. Projection done assuming that other nuclear effect are under control.]

 Proton PDFs studies : yet to be done along the lines of the studies carried out for low-x gluon at the LHC

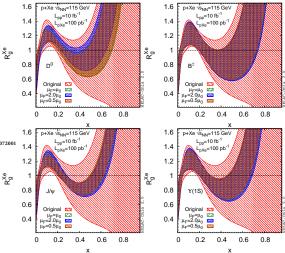
PROSA Coll. Eur.Phys.J. C75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001

#### Talk by A. Kusina on Wednesday



イロト イポト イヨト イヨ

• First extremely promising projections


[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. Projection done assuming that other nuclear effect are under control.]

 Proton PDFs studies : yet to be done along the lines of the studies carried out for low-x gluon at the LHC

PROSA Coll. Eur.Phys.J. C75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001

Contrary to nPDF studies
 bearing on nuclear modification
 factors, one needs ways to reduce
 the systematical theory
 uncertainties

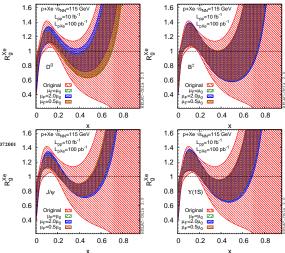
#### Talk by A. Kusina on Wednesday



イロト イヨト イヨト イヨ

The AFTER@LHC programme

• First extremely promising projections


[NB: initial nPDF uncertainties for x > 0.1 (red band) are underestimated; simply no data exist there. Projection done assuming that other nuclear effect are under control.]

 Proton PDFs studies : yet to be done along the lines of the studies carried out for low-x gluon at the LHC

PROSA Coll. Eur.Phys.J. C75 (2015) 396; R. Gauld, J. Rojo PRL 118 (2017) 072001

Contrary to nPDF studies bearing on nuclear modification factors, one needs ways to reduce the systematical theory uncertainties

#### Talk by A. Kusina on Wednesday



#### Reward: unique constraints on gluon PDFs at high *x* and low scales

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 19 / 21

# Part VI

# Conclusion

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 20 / 21

크

イロト イヨト イヨト イヨト

#### $\bullet~$ Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

イロト イヨト イヨト イヨト

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

イロト イヨト イヨト

• The nucleon spin and the transverse dynamics of the partons

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

イロト イロト イヨト

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

new energy, new rapidity domain and new probes

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

new energy, new rapidity domain and new probes

• 2 ways towards fixed-target collisions with the LHC beams

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

new energy, new rapidity domain and new probes

- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

new energy, new rapidity domain and new probes

- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

• Three main themes push for a fixed-target program at the LHC

S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. Phys.Rept. 522 (2013) 239

• The high *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- Heavy-ion studies

new energy, new rapidity domain and new probes

- 2 ways towards fixed-target collisions with the LHC beams
- A slow extraction with a bent crystal
- An internal gas target inspired from SMOG@LHCb/Hermes/H-Jet, ...
- Based on fast simulations, the AFTER@LHC study group has made FoMs for LHCb and ALICE in the FT mode

which clearly support a full physics program

イロト イポト イヨト イヨト

• Our review is now out [arXiv:1807.00603] and will feed in the European Strategy via the Physics Beyond Colliders Working Group

# Part VII

# Backup slides

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 22 / 21

크

イロト イヨト イヨト イヨト

## Qualitative comparison

|                                                           | Internal gas target |         |              | Internal solid target | Beam splitting      | Beam extraction |
|-----------------------------------------------------------|---------------------|---------|--------------|-----------------------|---------------------|-----------------|
| Characteristics                                           | SMOG                | Gas Jet | Storage Cell | with beam halo        |                     |                 |
| Run duration <sup>14</sup>                                | *                   | **      | **           | *                     | **                  | * * *           |
| Parasiticity <sup>15</sup>                                | ***                 | **      | **           | *                     | **                  | * * *           |
| Integrated lumi-<br>nosity <sup>16</sup>                  | *                   | **      | **           | *                     | **                  | * * *           |
| Absolute lumi-<br>nosity determina-<br>tion <sup>17</sup> | *                   | **      | **           | *                     | **                  | * * *           |
| Target versality <sup>18</sup>                            | **                  | **      | ***          | **                    | **                  | * * *           |
| Target polarisa-<br>tion <sup>19</sup>                    | -                   | **      | **           | -                     | - / * <sup>20</sup> | *               |
| Use of existing experiment <sup>21</sup>                  | **                  | *       | *            | *                     | *                   | -               |
| Civil engineering<br>or R&D <sup>22</sup>                 | ***                 | **      | **           | **                    | **                  | *               |
| Cost                                                      | ***                 | **      | **           | **                    | **                  | *               |
| Implementation time                                       | * * *               | **      | **           | **                    | **                  | *               |
| High x <sup>23</sup>                                      | *                   | **      | ***          | *                     | */ * *              | * * *           |
| Spin Physics <sup>24</sup>                                | -                   | ***     | ***          | -                     | -/**                | * * *           |
| Heavy-Ion <sup>25</sup>                                   | *                   | **      | **           | */ * *                | **                  | ***             |

Table 8: Qualitative comparison of the various technological solutions.

## Heavy-Ion Physics

- Estimation of the freeze-out parameters reachable in the AFTER@LHC project by V. Begun, D. Kikola, V. Vovchenko, D. Wielanek, Phys. Rev. C 98 (2018)
- Rapidity scan in heavy ion collisions at \sqrt{snn} = 72 GeV using a viscous hydro + cascade model by I. Karpenko: arXiv:1805.11998 [nucl-th]
- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at √s<sub>NN</sub> = 115 GeV and Pb+p collisions at √s<sub>NN</sub> = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigne. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

J.P. Lansberg (IPNO)

The AFTER@LHC programme

## Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

イロト イポト イヨト イヨト

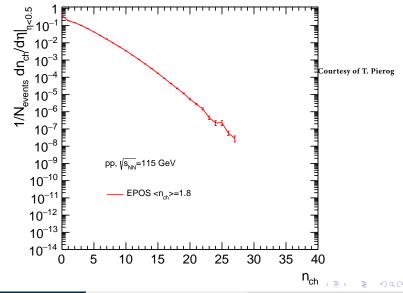
### Hadron structure

- Exclusive vector meson photoproduction in fixed target collisions at the LHC by V.P. Goncalves, M.M. Jaime. Eur.Phys.J. C78 (2018) no.9, 693
- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η<sub>c</sub> production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
   By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of Ξ<sub>cc</sub> at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

## Feasibility study and technical ideas

- Feasibility Studies for Single Transverse-Spin Asymmetry Measurements at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC) by Daniel Kikola et al. [arXiv:1702.01546 [hep-ex]]. Few Body Syst. 58 (2017) 139.
- Heavy-ion Physics at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC): Feasibility Studies for Quarkonium and Drell-Yan Production by B. Trzeciak et al. [arXiv:1703.03726 [nucl-ex]] Few Body Syst. 58 (2017) 148
- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- Quarkonium production and proposal of the new experiments on fixed target at LHC by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

### Generalities


 Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 27 / 21

High multiplicity *pp* at low energies



J.P. Lansberg (IPNO)

The AFTER@LHC programme

October 4, 2018 28 / 21