<u>AFTER@LHC: A Fixed Target ExpeRiment</u> for hadron, heavy-ion and spin physics: Status and short-range plan

Barbara Trzeciak Czech Technical University in Prague

M. Anselmino (Torino), R. Arnaldi (Torino), S.J. Brodsky (SLAC), V. Chambert (IPNO), J.P. Didelez (IPNO), E.G. Ferreiro (USC), F. Fleuret (LLR), B. Genolini (IPNO), Y. Gao (Tsinghua), C. Hadjidakis (IPNO), I. Hrvinacova (IPNO), J.P. Lansberg (IPNO), C. Lorce (SLAC), L. Massacrier (LAL), R. Mikkelsen (Aarhus), A. Rakotozafindrabe (CEA), P. Rosier (IPNO), I. Schienbein (LPSC), E. Scomparin (Torino), B. Trzeciak (Prague U.), U.I. Uggerhøj (Aarhus), R. Ulrich (KIT), Y. Zhang (Tsinghua)

Sapore Gravis Workshop 9-12 December 2014 Padova, Italy

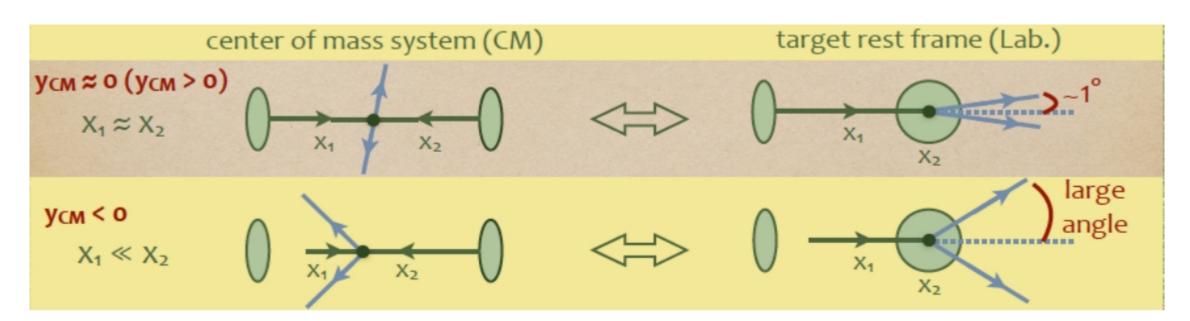
- Advantages of a fixed target experiment at LHC
- Internal gas target vs beam extraction with a bent crystal
- Expected luminosities
- Physics Highlights
- First simulations

Advantages of a fixed target experiment at LHC

- **Advantages of a fixed-target experiment:**
 - high luminosities with dense targets
 - target versatility
 - possibility to polarize target
 - > spin physics program
 - access to large Feynman |x_F|
- ➤ With LHC beams:

7 TeV proton beam on a fixed target

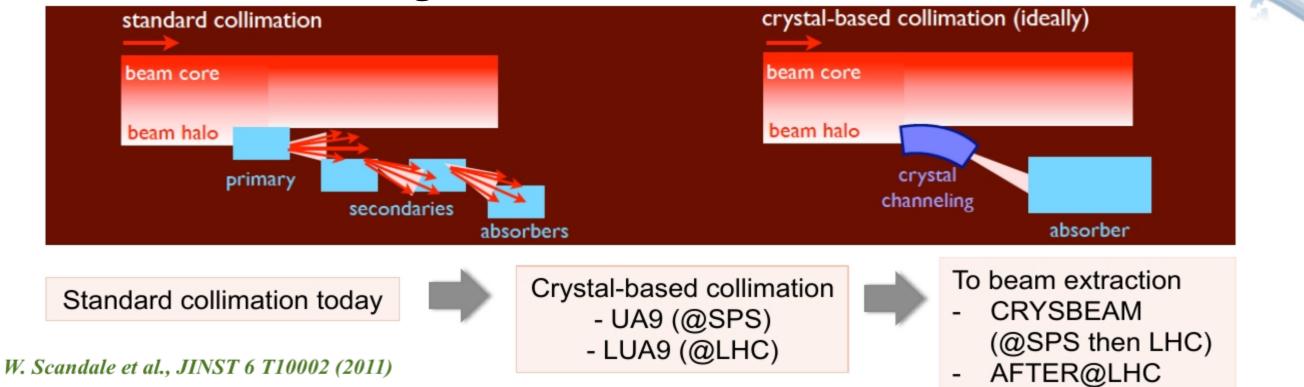
CMS energy: $\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV}$ Rapidity shift:Boost: $\gamma = \sqrt{s} / (2m_p) \approx 60$ $y_{CM} = 0 \rightarrow y_{lab} = 4.8$

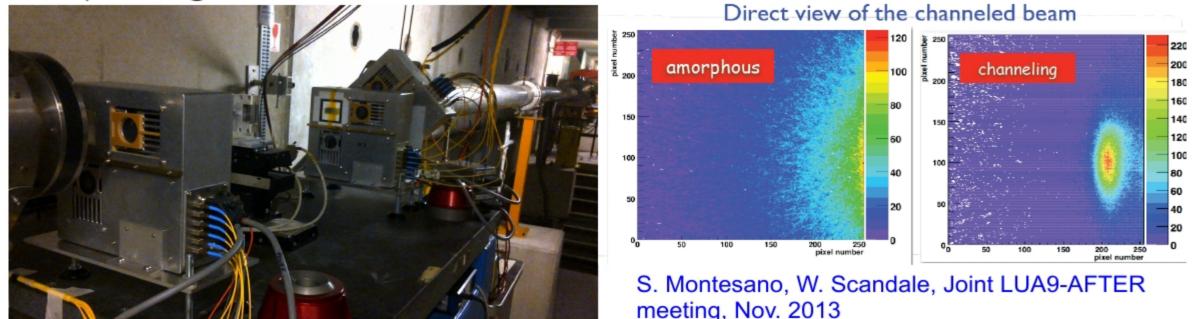

2.76 TeV Pb beam on a fixed target

CMS energy:	$\sqrt{s_{_{NN}}} = \sqrt{2m_{_N}E_{_{\mathrm{Pb}}}} \approx 72 \; \mathrm{GeV}$	
Boost:	$\gamma \approx 40$	$y_{CM} = 0 \rightarrow y_{lab} = 4.3$

AFTER

Advantages of a fixed target experiment at LHC


Testing QCD at large x = (0.3, 1)


- ✓ Entire forward hemisphere $-y_{CM} > 0$ within: $0^{\circ} < \theta_{lab} < 1^{\circ}$ large occupancy more challenging
- ✓ Backward region y_{CM} < 0 at large angles in the lab frame low occupancy, no constrain from a beam pipe
 - Backward physics accessible
 - Access to partons with momentum fraction $x_2 \rightarrow 1$ in the target $(\underline{x}_F \rightarrow -1)$

GETER Beam extraction using bent crystal

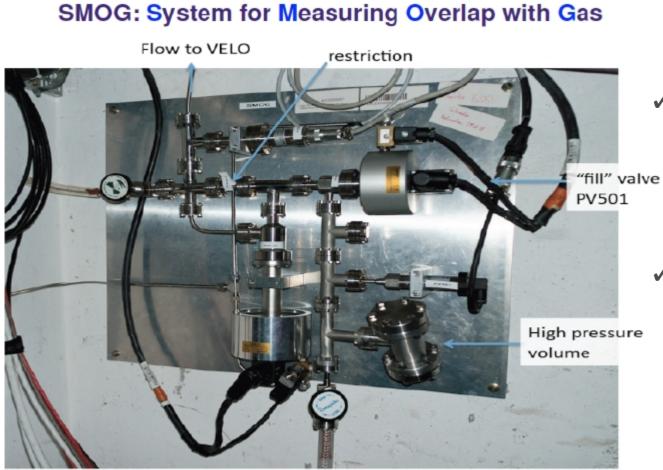
Possible fixed-target mode

UA9 experiment @ SPS, 15/10/2014

GETER Beam extraction using bent crystal

- Beam collimation @LHC: amorphous collimator, inefficiency of 0.2% (3.5 TeV p beam)
 - Expected bent crystal inefficiency: 0.02%
 - <u>UA9</u>: test @SPS on the crystal with proton and ion beams
 - *LUA9* (beam bending experiment using crystal): approved by LHCC
 - 2 bent crystals installed in IR7 during LS1 2015/2016 first tests with beams
- **Proton beam extraction:**
 - Single or multi-pass extraction efficiency of 50%
 - LHC beam loss ~ $10^{9} p^{+} s^{-1}$ extracted beam : $5 \times 10^{8} p^{+} s^{-1}$
 - Extremely small emittance: beam size (in the extraction direction) 950m after the extraction: 0.3mm

<u>Ion beam extraction</u>


 \succ

• Successfully tested at the SPS, should also work at the LHC (P. Ballin et al, NIMB 267 (2009) 2952)

→ Deflecting the beam halo at 7σ distance to the beam
 → No loss in the LHC beam

Possible fixed-target mode

→ injection of Ne-gas into VELO

- Noble gases favored
- > As for now, target polarization is not possible with SMOG
- Internal gas target can be polarized, would be another system with respect to SMOG

- Low density Ne-gas injected into VELO in LHCb
- ✓ Short pNe pilot run at $\sqrt{s_{_{NN}}} = 87 \text{ GeV}$ in 2012

LHCb-CONF-2012-034

✓ Short PbNe pilot run at $\sqrt{s_{_{NN}}} = 54 \text{ GeV}$ in 2013

> More details on SMOG in the Michael Schmelling's talk, earlier today

Luminosities in pH and pA at $\sqrt{s_{NN}} = 115 \text{ GeV}$ With bent crystal

- Instantaneous luminosity: $L = \phi_{\text{beam}} \times N_{\text{target}} = \phi_{\text{beam}} \times (\rho \times l \times N_A) / A$ l is a target thickness
- ϕ beam = 5 ×10⁸ p⁺ s⁻¹ (50% of the beam loss)
- ✓ Integrated luminosity LHC year 9 months running = 10^7 s

Target	ρ (g.cm ⁻³)	Α	L (µb ⁻¹ s ⁻¹)	∫ L (pb ⁻¹ yr ⁻¹)
$\operatorname{Liq}\operatorname{H}_{2}(1m)$	0.07	1	2000	20000
Liq D_2 (1m)	0.16	2	2400	24000
Be (1cm)	1.85	9	62	620
Cu (1cm)	8.96	64	42	420
W (1cm)	19.1	185	31	310
Pb (1cm)	11.35	207	16	160

Large luminosities comparable to LHC - with 1 m long H₂(D_z) target,
 3 orders of magnitude larger that at RHIC

Luminosities in pA bent crystal vs SMOG

	With be	nt c	rystal	SMOG based on the pilot run	
Target	ρ (g.cm ⁻³)	Α	L (µb ⁻¹ s ⁻¹)	∫ L (pb ⁻¹ yr ⁻¹)	Target: Ne gas
Be (1cm)	1.85	9	62	620	• Ne target density: 10 ⁻⁶ mbar
Cu (1cm)	8.96	64	42	420	• $\mathbf{L} = \underline{8 \ \mu \mathbf{b}^{-1} \mathbf{s}^{-1}}$

- Higher **instantaneous** luminosities using a bent crystal compare to what is expected from SMOG from the pilot run - 62 µb⁻¹s⁻¹ with 1cm Be target vs 8 µb⁻¹s⁻¹ for Ne in SMOG
- Higher Ne pressure needed in SMOG in order to reach comparable luminosity as in the bent crystal case
 - ✓ assuming 1 year of running with proton beam and P ≈ 10^{-5} mbar one can obtain comparable luminosity as in the bent crystal case
 - Increasing the pressure is not expected to decrease the beam life time
 - Tests for long runs have to be done 1-week SMOG test proposed in LHCb for the next year

- ✓ Instantaneous luminosity: $L = \phi_{\text{beam}} \times N_{\text{target}} = \phi_{\text{beam}} \times (\rho \times l \times N_A) / A$ *l* is a target thickness
- \checkmark ϕ beam = 2 × 10⁵ Pb s⁻¹
- ✓ Integrated luminosity LHC year 1 month running = 10^{6} s

Target	ρ (g.cm ⁻³)	Α	L (mb ⁻¹ s ⁻¹)	∫ L (nb ⁻¹ yr ⁻¹)
Liq H_2 (1m)	0.07	1	800	800
Liq D_2 (1m)	0.16	2	1000	1000
Be (1cm)	1.85	9	25	620
Cu (1cm)	8.96	64	17	17
W (1cm)	19.1	185	13	13
Pb (1cm)	11.35	207	7	7

- Planned luminosity for PHENIX Run15 AuAu 2.8 nb⁻¹ (0.13 nb⁻¹ at 62 GeV)
- Nominal LHC luminosity for PbPb 0.5 nb⁻¹

Physics Highlights: AFTER @ LHC

Physics Reports 522 (2013) 239

Physics Reports 522 (2013) 239-255

	Contents lists available at SciVerse ScienceDirect	PHYSICS REPORTS
	Physics Reports	ANTINA CARACTERISTICS AND
ELSEVIER	journal homepage: www.elsevier.com/locate/physrep	There is a subscription

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

^a SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France

^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsay, France

Contents

1.	Intro	duction		6	Decor	nfinement in he
2.			and features	υ.	6.1.	Quarkonium
3.			nic structure		6.2.	Jet quenching
	3.1.		/an		6.3.	Direct photo
	3.2.	Gluons	in the proton at large x		6.4.	Deconfineme
		3.2.1.	Quarkonia		6.5.	Nuclear-mat
		3.2.2.	Jets	7.		d Z boson prod
			-		7.1.	First measure
		3.2.3.	Direct/isolated photons		7.2.	W/Z product
	3.3.	Gluons	in the deuteron and in the neutron	8.		sive, semi-excl
	3.4.	Charm	and bottom in the proton		8.1.	Ultra-peripho
		3.4.1.	Open-charm production		8.2.	Hard diffract
		3.4.2.	$J/\psi + D$ meson production		8.3.	Heavy-hadro
		3,4,3,	Heavy-quark plus photon production		8.4.	Very backwa
4.	Spin p	physics			8.5	Direct hadro
	4.1.	Transve	erse SSA and DY	9.	Furth	er potentialitie
	4.2.	Quarko	nium and heavy-quark transverse SSA		9.1.	D and B phys
	4.3.	Transve	erse SSA and photon		9.2.	Secondary be
	4.4.	Spin as	ymmetries with a final state polarization		9.3.	Forward stud
5.	Nucle	ear matte	r	10.	Concl	usions
	5.1.		nPDF: Drell–Yan in pA and Pbp			wledgments
	5.2.		nPDF			ences
		5.2.1.	Isolated photons and photon-jet correlations			
		5.2.2.				
	5.0	C 1 C				

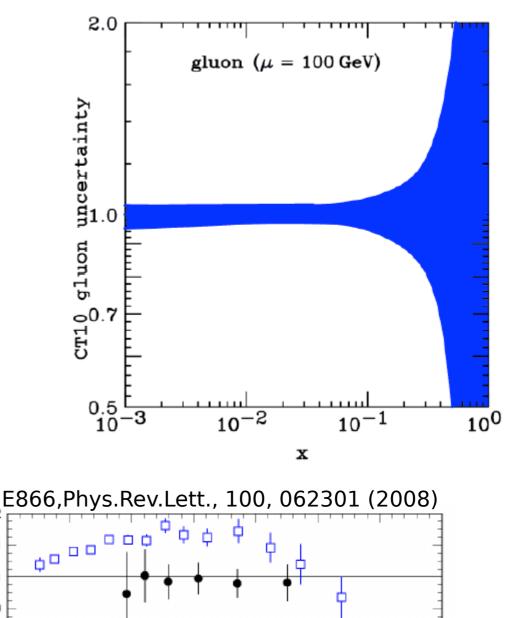
6.	Deco	nfinement in heavy-ion collisions
υ.	6.1.	Quarkonium studies
	6.2.	Jet quenching
	6.3.	Direct photon
	6.4.	Deconfinement and the target rest frame
	6.5.	Nuclear-matter baseline
7.	W an	d Z boson production in pp, pd and pA collisions
	7.1.	First measurements in pA
	7.2.	W/Z production in pp and pd
8.	Exclu	sive, semi-exclusive and backward reactions
	8.1.	Ultra-peripheral collisions
	8.2.	Hard diffractive reactions
	8.3.	Heavy-hadron (diffractive) production at $x_F \rightarrow -1$.
	8.4.	Very backward physics
	8.5.	Direct hadron production
9.	Furth	er potentialities of a high-energy fixed-target set-up
	9.1.	D and B physics
	9.2.	Secondary beams
	9.3.	Forward studies in relation with cosmic shower
0.	Concl	usions
	Ackn	owledgments
	Refer	ences

5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

Physics Highlights: AFTER @ LHC pp and pA @ $\sqrt{s_{NN}}$ = 115 GeV

- Nucleon partonic structure
 - Gluon pdf in the proton large uncertainties at high x
 - $g_p(x) = g_n(x)$?
 - → Measure: quarkonia, isolated photons, high-p_T jets
 - Multiple probes to check factorization
- Heavy-quark distribution at large x in the proton
 - Measure: open heavy flavours
- Spin physics
 - Gluon Sivers effect
 - Linearly polarized gluons: $h_1^{\perp g}$
 - Single Spin Asymetry in DY and HF studies
- W and Z production near threshold ?

Physics Highlights: AFTER @ LHC pp and pA @ $\sqrt{s_{_{NN}}} = 115 \text{ GeV}$


б

0.05

0.1

<u>Understand dynamic of large-x gluon in nucleon</u>

- → Quarkonia
- Isolated photons
- High- p_T jets (> 20 GeV/c)
- Gluon distribution function in the proton:
 very large uncertainty at large x, also at large Q
- Unknown for the neutron
- ✓ With AFTER@LHC:
 - Access to target $x_g = 0.3 1$ (>1 Fermi motion in nucleus)
 - Different targets:
 - Hydrogen pp, pd, pn
 - → Deuteron (neutron)

rell—Yan

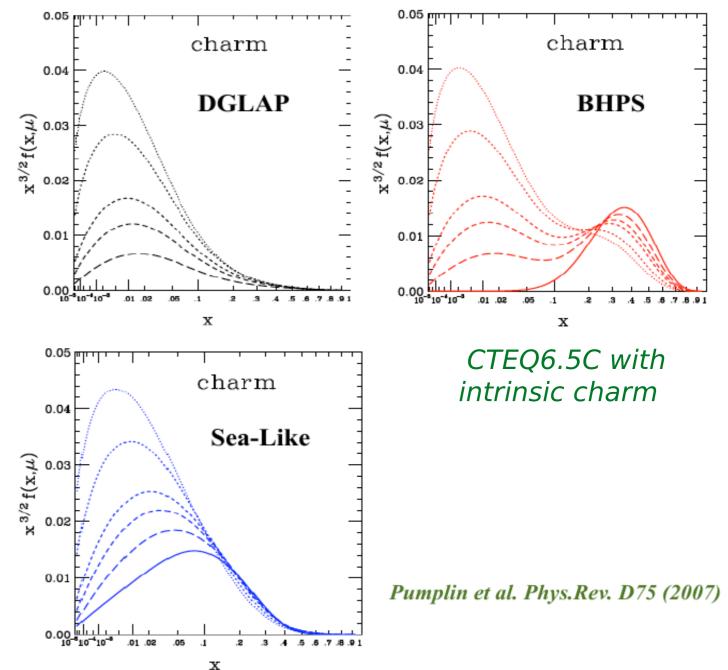
0.25

0.3

0.35

0.2

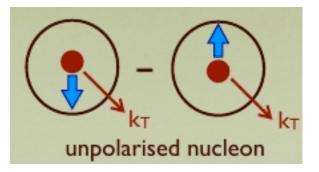
0.15

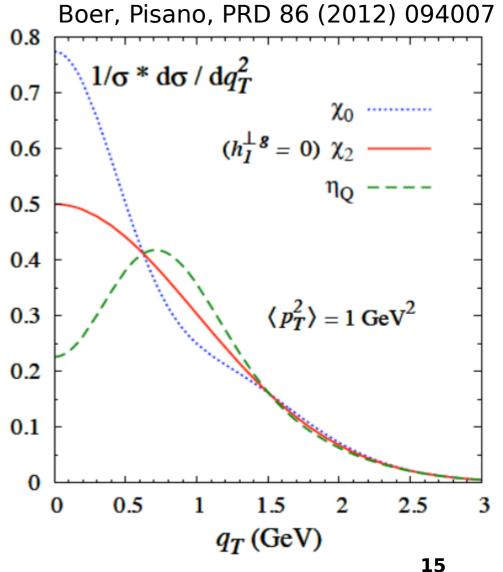

 X_2

Physics Highlights: AFTER @ LHC pp @ $\sqrt{s_{_{NN}}} = 115 \text{ GeV}$

<u>Heavy-quark distribution at large x</u>

- → Open charm
- → Open beauty
- Pin down intrinsic charm
 - Non-perturbative models of hadron structure
 - Different charm pdfs (DGLAP or models with intrinsic charm) are in agreement with DIS data
 - ∽ With AFTER@LHC
 - Good coverage in the target rapidity region
 - High luminosity to reach large $x_{_B}$

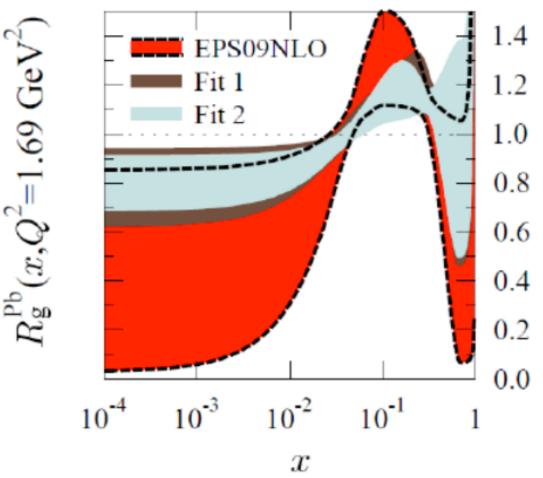



Physics Highlights: AFTER @ LHC pp @ $\sqrt{s_{_{NN}}} = 115 \text{ GeV}$

- Linearly polarized gluons: $h_1^{\perp g}$

* "Boers-Mulder" effect: correlation between the parton k_T and its spin (in unpolarized nucleon)

- Scalar and pseudo-scalar quarkonia $\chi_{c0}, \chi_{b0}, \eta_c, \eta_b$
- Low-p_TC-even quarkonium production is a good
 probe of gluon Transverse Momentum Dependent
 (TMD) pdfs
- Low-p_T of scalar and pseudo-scalar quarkonia are affected differently by the linearly polarized gluons in unpolarized nucleons
- With AFTER@LHC
 - Boost better access to the low-p_TC-even quarkonia
 - + $\eta_{\rm C}$ (LHCb 1409.3612), ($\eta_{\rm b}$), back-to-back J/ ψ + γ , J/ ψ + J/ ψ

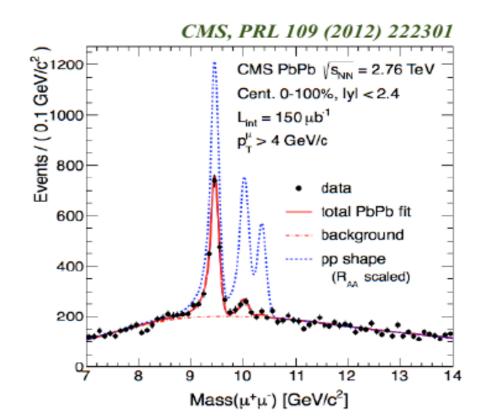


Physics Highlights: AFTER @ LHC PbA @ \sqrt{s}_{NN} = 72 GeV, pA @ \sqrt{s}_{NN} = 115 GeV

<u>Gluon distribution in nucleus at large x</u>

- → Quarkonia
- Isolated photons
- High- p_T jets (> 20 GeV/c)
- Large uncertainty in nuclei at large x,
 unknown gluon EMC effect
- ✓ With AFTER@LHC:
 - Access to target $x_g = 0.3 1$ (>1 Fermi motion in nucleus)
 - With different targets:
 - probing A dependence of
 shadowing and nuclear matter effects

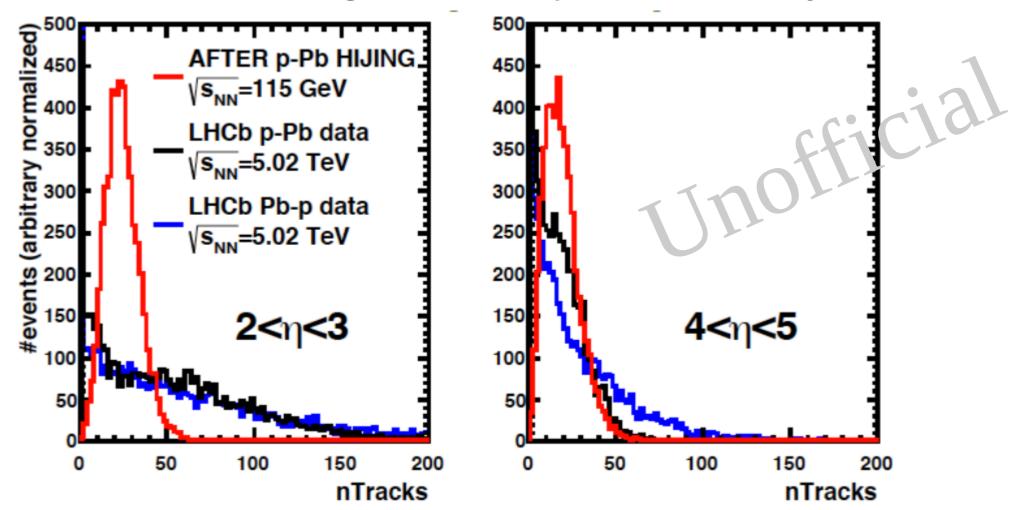
LHeC CDR J. Phys. G 39 (2012) 075001



Physics Highlights: AFTER @ LHC PbA @ $\sqrt{s_{_{NN}}} = 72 \text{ GeV}$

Gluon distribution in nucleus at large x

- EIC, LHeC experiments do not help much
 - → Quarkonia, isolated photons, high-p_T jets
- ✓ Quark-Gluon Plasma
 - Experimental probes
 - > Quarkonia
 - HF jets quenching
 - > Low mass lepton pairs
 - Direct photons
 - (Sequential ?) suppression of different quarkonia states good resolution needed
 - In PbA, different nuclei, A-dependent studies
 - Precise estimation of Cold Nuclear Matter effects from pA
- Ultra-peripheral collisions



First simulations

7 TeV proton beam on a Pb target $√s_{NN} = 115 \text{ GeV}$

Z. Yang, AFTER workshop les Houches, January 2014

- Probability of high track multiplicity is lower in the fixed target mode than in the collider mode, at LHCb acceptance 2 < η < 5
- Boost should not be an issue no problem for LHCb-like detector to cope with seen multiplicity

Expected quarkonium yield pp and pA @ $\sqrt{s} = 115$ GeV

Target	∫£ (fb⁻¹.yr⁻¹)	N(J/Ψ) yr-1 = A£ℬσ _Ψ	Ν(Υ) yr- 1 =Α£βσ _r
1 m Liq. H ₂	20	4.0 10 ⁸	8.0 10 ⁵
1 m Liq. D ₂	24	9.6 10 ⁸	1.9 10 ⁶
LHC pp 14 Tev (low pT)	0.05 (ALICE) 2 LHCb	3.6 10 ⁷ 1.4 10 ⁹	1.8 10⁵ 7.2 10 ⁶
RHIC pp 200GeV	1.2 10 ⁻²	4.8 10 ⁵	1.2 10 ³

pp

<u>1 m H₂ target</u>

- ✓ 1000 times more statistics than at RHIC (@200 GeV)
- Comparable statistics to LHC

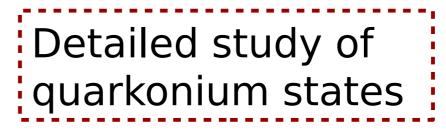
				Г -
Target	А	∫£ (fb⁻¹.yr⁻¹)	N(J/Ψ) yr-1 = A£βσ _Ψ	N(Υ) yr ⁻¹ =A£ℬσ _Υ
1cm Be	9	0.62	1.1 10 ⁸	2.2 10 ⁵
1cm Cu	64	0.42	5.3 10 ⁸	1.1 10 ⁶
1cm W	185	0.31	1.1 10 ⁹	2.3 10 ⁶
1cm Pb	207	0.16	6.7 10 ⁸	1.3 10 ⁶
LHC pPb 8.8 TeV	207	10 ⁻⁴	1.0 107	7.5 10 ⁴
RHIC dAu 200GeV	198	1.5 10 -4	2.4 10 ⁶	5.9 10 ³
RHIC dAu 62GeV	198	3.8 10 -6	1.2 10 ⁴	18

pA

<u>1 cm Pb target</u>

- ✓ 100 times more statistics than at RHIC (dAu@200 GeV)
- Comparable statistics to LHC

Detailed study of quarkonium production and nuclear effects

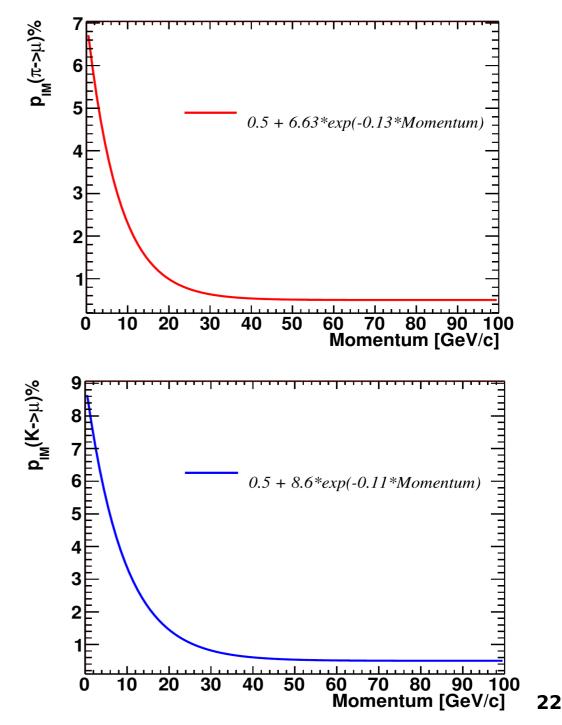


Expected quarkonium yield

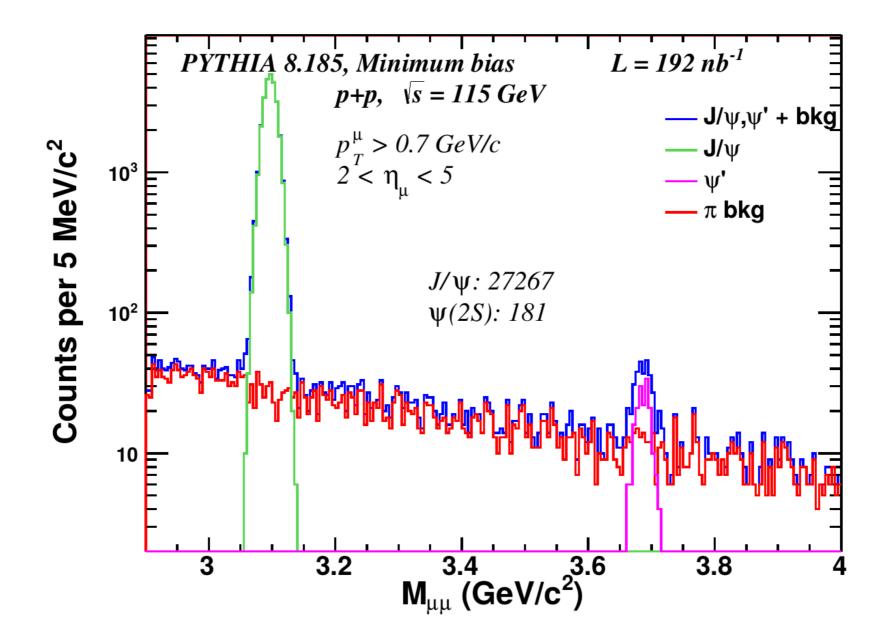
PbA@ $\sqrt{s_{NN}}$ = 72 GeV

PhA	Target	A.B	∫£ (nb⁻¹.yr⁻¹)	N(J/Ψ) yr -1 = AB <i>L</i> ℬσ _Ψ	Ν(Υ) yr- 1 =AB <i>L</i> ℬσ _r
	1 m Liq. H ₂	207.1	800	3.4 10 ⁶	6.9 10 ³
	1cm Be	207.9	25	9.1 10 ⁵	1.9 10 ³
	1cm Cu	207.64	17	4.3 10 ⁶	0.9 10 ³
	1cm W	207.185	13	9.7 10 ⁶	1.9 10 ⁴
	1cm Pb	207.207	7	5.7 10 ⁶	1.1 10 ⁴
	LHC PbPb 5.5 TeV	207.207	0.5	7.3 10 ⁶	3.6 10 ⁴
	RHIC AuAu 200GeV	198.198	2.8	4.4 10 ⁶	1.1 10 ⁴
	RHIC AuAu 62GeV	198.198	0.13	4.0 10 ⁴	61
	1 cm	Pb targe	et		

- ✓ Similar statistics than at RHIC @200 GeV
- 2 order of magnitude larger that at RHIC
 @62 GeV



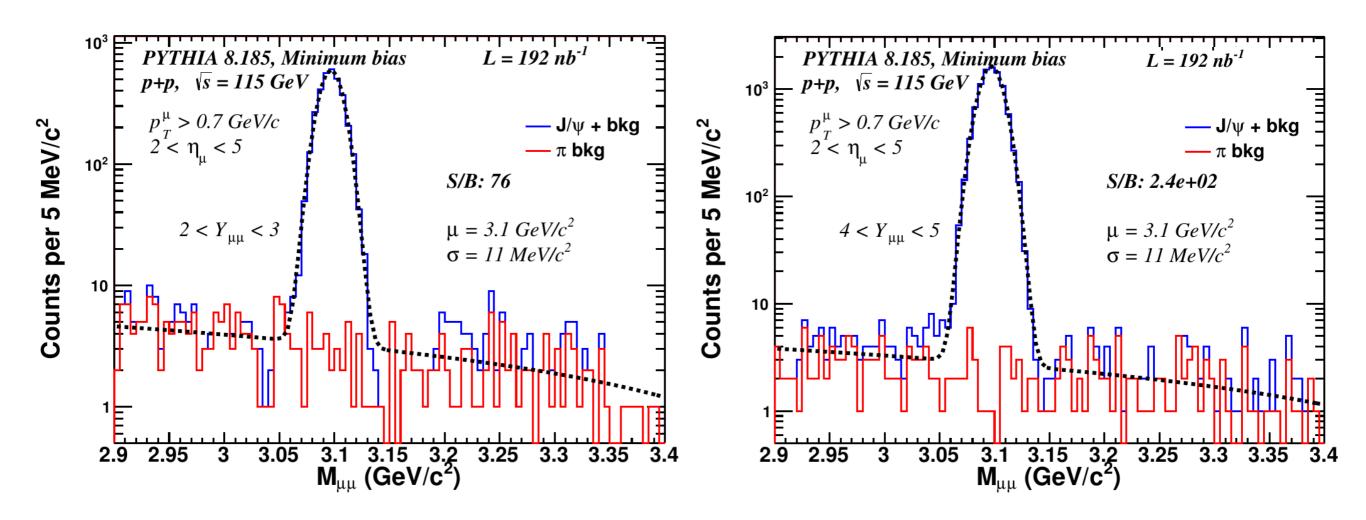
Quarkonia fast simulations, pp at $\sqrt{s} = 115$ GeV


- PYTHIA 8.185
- Fast simulations with LHCb reconstruction parameters
- ✓ <u>Requirements:</u>
- Momentum resolution: $\Delta p/p = 0.5\%$
- → μ identification efficiency: 98%
- ✓ <u>Single μ cuts:</u> → 2 < η_{μ} < 5 → p_{T}^{μ} > 0.7 GeV/c

μ misidentification (with π or K):
 If π/K decays before 12m (LHCb calorimeter) it is rejected by tracking
 If decays after 12m misidentification probability is applied – see plots

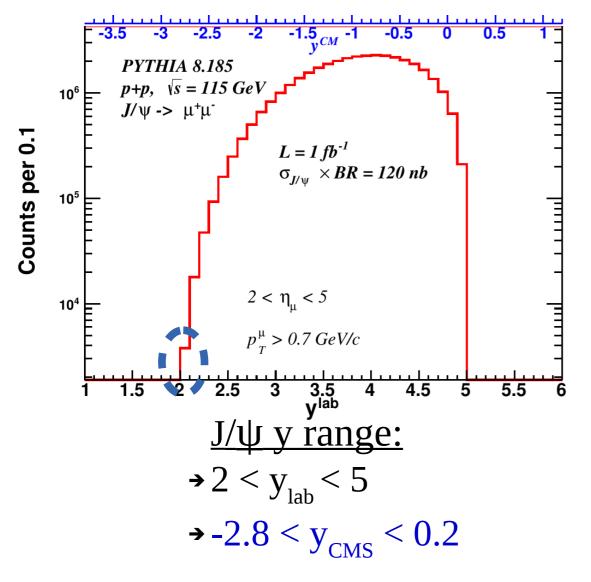
$\begin{array}{l} \psi \text{ signal simulation with} \\ \textbf{full background} \\ J/\psi / \psi' \rightarrow \mu^+ \mu^- \end{array}$

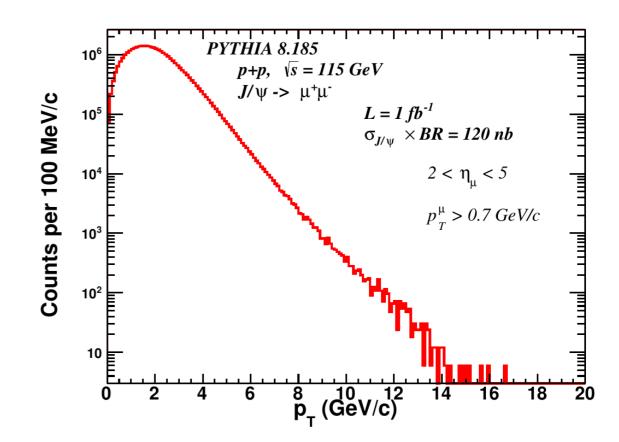
> **JL** = 192 nb⁻¹, **1.5 minute of data taking with 1m H**, **target**



• Dominant source of background is from misidentified π

J/ ψ signal simulation with full background, y bins $J/\psi \rightarrow \mu^+ \mu^-$


> $\int L = 192 \text{ nb}^{-1}$, **1.5 minute of data taking with 1m H**₂ **target**


- Excellent J/ψ signal with high signal to background ratio
- Most background is combinatorial (μ not coming from J/ψ decay)

> $\int L = 1 \text{ fb}^{-1}$, 2 weeks of data taking with 1m H₂ target

- J/ ψ rapidity range limited only by cuts on μ (2 < η_{μ} < 5)
- With larger acceptance detector even wider J/ψ rapidity range

- → $p_T = 15$ GeV/c for J/ ψ easily reachable
 - with a year of data taking (20 fb⁻¹)
- This corresponds to $x_T = 0.25$
- → Equivalent p_T reach to RHIC @500 GeV
- The same p_T reach expected for pA

- Many physics opportunities with a fixed target experiment using LHC p and Pb beams
- Novel testing ground for QCD in the high-x frontier with AFTER@LHC
- Extensive spin program with a polarized target
- Using dense targets high luminosities can be achieved
- Target versatility: hydrogen, deuteron, nucleus nuclear effects and QGP
- First fast simulations performed

- Special issue in Advances in High Energy Physics submission deadline March 20, 2015
 - → *Everybody is welcome to contribute*
- Expression of interest expected in 2015
- Development of the fast simulation framework

after.in2p3.fr

Thank you !

BACKUP

Physics Highlights: AFTER @ LHC pp and pA $@\sqrt{s_{NN}} = 115$ GeV

(Gluon) Sivers effects with a transversely polarized target

Gluon Sivers effect: correlation between the gluon transverse momentum $k_{\rm T}$ and the proton spin

□ The target rapidity region (x_F < 0) corresponds to high x[↑] (x_F → -1) where the k_T - spin correlation is the largest

□ Transverse single spin asymetries studied using **gluon sensitives probes**:

- quarkonia (J/ ψ , Y, χ_c)
- B & D mesons production
- $\gamma,\,\gamma\text{-jet},\,\gamma\text{-}\gamma$ also J/ $\psi\text{-}\gamma$

L. Massacrier – SPIN 2014 Conference

Physics Highlights: AFTER @ LHC pp and pA $@\sqrt{s_{NN}} = 115 \text{ GeV}$

TMDs STUDIES WITH AFTER@LHC (WITH A POLARIZED TARGET)


(Quark) Sivers effects with a transversely polarized target

Can be probed with the Drell-Yan

Experiment	particles	energy (GeV)	√ <u>s</u> (GeV)	x_p^{\uparrow}	$\frac{\mathscr{L}}{(nb^{-1}s^{-1})}$
AFTER	$p + p^{\uparrow}$	7000	115	$0.01 \div 0.9$	1
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	0.2÷0.3	2
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	\sim 0.05	2
(low mass)					
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	0.5÷0.9	1000
PANDA	$\bar{p} + p^{\uparrow}$	15	5.5	0.2÷0.4	0.2
(low mass)					
PAX	$p^{\uparrow} + \bar{p}$	collider	14	0.1÷0.9	0.002
NICA	$p^{\uparrow} + p$	collider	20	0.1÷0.8	0.001
RHIC	$p^{\uparrow} + p$	250	22	0.2÷0.5	2
Int.Target 1					
RHIC	$p^{\uparrow} + p$	250	22	0.2÷0.5	60
Int.Target 2	-				
P1027	$p^{\uparrow} + p$	120	15	$0.35 \div 0.85$	400-1000
P1039	$p + p^{\uparrow}$	120	15	0.1÷0.3	400-1000

Relevant parameters for the future proposed polarized DY experiments

S. J. Brodsky et al., Phys. Rep. 522 (2013) 239 V. Barone et al., Prog. Part. Nucl. Phys. 65 (2010) 267

Prediction for AFTER

Asymmetry up to 10% predicted in DY for the target rapidity region ($x_F < 0$) L. Massacrier – SPIN 2014 Conference

M. Anselmo, ECT*, Feb. 2013 (Courtesy U. d'Alessio)