

A Fixed-Target Program at the LHC (AFTER@LHC): where do we stand?

Zhenwei Yang (楊振偉) Tsinghua University (清華大學)

for the AFTER@LHC Study group http://after.in2p3.fr/after/index.php/Current_member_list 7 July, 2018

ICHEP2018 SEOUL XXXIX INTERNATIONAL CONFERENCE ON high 6

Outline

> Introduction: what and why Kinematic features of AFTER@LHC Physics opportunities Possible implementations > Physics projections > Summary

A Fixed-Target Programme at the LHC: Physics Case and Projected Performances for Heavy-Ion, Hadron, Spin and Astroparticle Studies, arXiv:1807.00603

> http://after.in2p3.fr/after/index.php/Main_Page Zhenwei Yang Tsinghua University

AFTER@LHC and its physics

- A proposed fixed-target experiment using the multi-TeV proton or heavy-ion beams of the LHC
 Physics domains
 - Frontier of high-x_F partons in nucleon and nucleus
 - Unraveling the nucleon spin
 - Nuclear matter in new rapidity and energy domains
- Assets
 - Achieving high luminosities
 - Varying different targets almost at will
 - Polarising the target
 - Accessing the high x_F partons

All these can be realised at the LHC in a parasitic mode, without affecting the performance of the LHC!

Main kinematic features

Beam energy	c.m.s energy $\sqrt{s_{NN}}=\sqrt{2m_N E_p}$	Lorentz boost $\gamma = \sqrt{s_{NN}}/(2m_N)$	Rapidity shift
7 TeV p beam	115 GeV	≈ 60	$y_{\rm c.m.s.} = y_{\rm lab} - 4.8$
2.76 TeV Pb beam	72 GeV	≈ 40	$y_{\rm c.m.s.} = y_{\rm lab} - 4.3$

> $\sqrt{s_{NN}}$ between SPS and RHIC and high luminosity

- Allow, for the first time, for systematic studies of bottomonia and studies of W close to the threshold in fixed-target modes
 High boost between c.m.s and lab frames
 - Forward hemisphere ($y_{c.m.s.} > 0$) is within $0^{\circ} < \theta_{lab} < 1^{\circ}$
 - LHCb and the ALICE muon arm detect backward physics
 - (y_{c.m.s.} < 0)
 ✓ Access to high x₂ (target), large angle in laboratory

Zhenwei Yang

Rapidity coverage

> With 7 TeV proton beam

Acceptance corresponds to a vertex position at the nominal Interaction Point

Physics motivation: high-x_F frontier

- Advance our understanding of high-x_F gluon, antiquark and heavy-quark contents in the nucleon and nucleus
 - Very large uncertainties of PDF for $x_F > 0.5$
 - Could be essential to possible discoveries of New Physics Beyond the Standard Model
 - **Origin of the EMC effect in nuclei**
 - ✓ Study of a possible gluon EMC effect is crucial
 - Possible non-perturbative source of c and b in protons
 - ✓ Important for HE neutrino and cosmic-ray physics.
 - Search and study rare proton fluctuations where one gluon carries most of the proton momentum
 - ✓ Test QCD in a new limit unexplored so far

Uncertainties at high *x_F* could be largely reduced by measurements from AFTER@LHC

6

Physics motivation: unraveling the nucleon spin

Advance our understanding of dynamics and spin of gluons and quarks inside (un)polarised nucleons

Possible missing contribution to the proton spin: Orbital Angular Momentum (OAM), \mathcal{L}_g and \mathcal{L}_q

- Access information on orbital motion of partons inside bound hadrons via Single Spin Asymmetry measurements
 ✓ Sivers effect
- Test TMD factorisation framework
 - \checkmark Sign change of A_N between SIDIS and Drell-Yan
- Determination of the linearly polarised gluons in unpolarised protons (Boer-Mulders effect)

W. J. den Dunnen et al, Phys.Rev.Lett. 112 (2014) 212001

Physics motivation: heavy-ion collisions

Heavy-ion collisions towards large rapidities

- A complete set of HF studies between SPS and RHIC energies
 - ✓ Needed to calibrate the quarkonium thermometer:
 - $J/\psi, \psi(2S), \chi_c, \Upsilon, D, J/\psi$ from b, ...

Physics motivation: heavy-ion collisions

Heavy-ion collisions towards large rapidities

- Test the formation of azimuthal asymmetries: hydrodynamics vs initial-state radiation
- **Explore the longitudinal expansion of QGP** formation
 - Probe T dependence of the shear viscosity to entropy density ratio (η/s)
- Test the factorisation of cold nuclear matter effects from p + A to A + B collisions

.B. Schenke, talk at QM2015 B. Schenke et al, Phys.Rev.Lett. 116 (2016) 212301

Zhenwei Yang **Tsinghua University**

Possible implementations

>Internal (gas or solid) target + existing detector

- (Un)polarised gas target + full LHC beam
- Internal wire target intercepting the faint beam halo
- Internal solid (polarised) target + beam splitting by bent-crystal

Beam extraction by bent crystal

New beam line + new detector

Similar luminosities with an internal gas target or a bent crystal implementation

A single-year luminosity is similar to the nominal LHC luminosity, and much larger than those at SPS or RHIC

Internal gas target: LHCb-SMOG

> System for Measuring Overlap with Gas (SMOG)

- Initially designed for precise luminosity measurements
- Noble gas injected inside the beam vacuum at the interacting point
- p + He(Ne, Ar) and Pb + Ne(Ar) tested, completely parasitic
- Could be coupled to ALICE

Typical integrated luminosity: $L_{\text{int}} \sim O\left(nb^{-1}\right)$

Internal gas target: HERMES-like & Gas jet

> HERMES-type system:

injecting gas in an open-end storage cell

- Dedicated pumping system, higher pressure
- Polarised H^{\uparrow} and D^{\uparrow} with high polarisation
- Implementations are under study
- Typical luminosity: $L_{int} \sim 10 \text{ fb}^{-1}$ for $p + H^{\uparrow}$ ~ 100 nb^{-1} for Pb + H^{\uparrow} ~ 30 nb^{-1} for Pb + Xe

Polarised H-jet polarimeter used at RHIC

- To measure the proton beam polarisation
- Polarised free atomic beam source (ABS)
 - **Expected Integrated luminosity over one LHC year**
 - $\checkmark L_{\rm int} \sim 50 \ {\rm pb^{-1}} \ {\rm for} \ p + {\rm H^1}$

Larger values with unpolarised H² target

E. Steffens,

Beam splitting/extraction using bent crystals

Bent crystals initially used for beam collimation

> Can be used to deflect beam halo at 7σ distance to the beam

- Beam extraction: civil engineering required, new facility with 7 TeV proton beam
- Beam splitting: could be used with existing experiment

> Typical luminosity over one year for 5 mm-thick targets

 $L_{\text{int}} \sim 0.3 \text{ fb}^{-1} \text{ for } p + C \quad (A = C, W)$ ~ 3 nb⁻¹ for Pb + C (A = C, W)

Selected physics projections

Assumptions of sensitivity study

LHCb-like detector

- $\sqrt{S_{NN}} = 115 \text{ GeV}, L_{int}(pH) = 10 \text{ fb}^{-1}/\text{y}$
- $\sqrt{S_{NN}} = 115 \text{ GeV}, L_{\text{int}}(p\text{Xe}) = 100 \text{ fb}^{-1}/\text{y}$
- $\sqrt{S_{NN}} = 72 \text{ GeV}, L_{int}(PbXe) = 30 \text{ nb}^{-1}/\text{y}$
- Reference at same energy:
 - $\checkmark L_{\rm int}(p{\rm H}) = 250 \ {\rm pb}^{-1}$
 - $\checkmark L_{\rm int}(p {\rm Xe}) = 100 \ {\rm pb}^{-1}$

Precise vertexing, hadron ID, muon ID

> ALICE-like detector • $\sqrt{S_{NN}} = 72 \text{ GeV}, L_{int}(PbA) = 1.6 \text{ nb}^{-1}/\text{y}$ A = W• $\sqrt{S_{NN}} = 115 \text{ GeV}, L_{int}(pA) = 6 - 40 \text{ pb}^{-1}/\text{y}$ A = C or W

Bent crystal + internal solid target: $Z \sim 0$ + ALICE-like acceptance

2018/7/7

Zhenwei Yang Tsin

Tsinghua University

15

Heavy-ion physics: toward large rapidities

T dependence of shear viscosity to entropy density ratio η/s

- One of the most fundamental properties of QGP
- Still poorly understood
 - Particle yields and azimuthal anisotropy coefficients v_n measured at large rapidities are powerful tools to η/s
- A small data sample will allow for a precision study of v_n over a very broad rapidity range

EPOS Pb+Pb @ $\sqrt{s_{NN}} = 72 \text{ GeV}$

Heavy-ion physics: toward large rapidities

Precise quarkonium studies: J/ψ and $\psi(2S)$

- Probe large gluon x_2 in the target
- Constrain gluon antishadowing, EMC effects, and other CNM effects with pA
- Study colour screening from QGP in AA
- Wide rapidity coverage with p_T down to zero GeV
- Full background simulations show very good prospects for all systems with LHCb-like performances
- $\psi(2S)$ measurement in PbXe with a statistical uncertainty from 10-30%

Nuclear modification factor

$$R_{AA'} \equiv \frac{dN_{AA'}}{\langle N_{\rm coll} \rangle dN_{pp}}$$

2018/7/7

Zhenwei Yang

Tsinghua University

17

Heavy-ion physics: toward large rapidities

Precise quarkonium studies: $\Upsilon(nS)$

- **Determination of thermodynamic properties of QGP + CNM effects with** $\Upsilon(nS)$ in *pp*, *p*A and AA
- Search for phase transition with $\Upsilon(nS)$ suppression as a function of y and system size
- Large $\Upsilon(nS)$ yields in one LHC year of PbXe data taking with LHCb-like performance

Statistical uncertainty ~7% on R_{AA}(Y(1S))

(a)			(b)			(c)		
$\Upsilon(1S)$	S	S/B	$\Upsilon(2S)$	S	S/B	$\Upsilon(3S)$	S	S/B
pp	1.33×10^{3}	29.0	pp	2.92×10^{2}	8.2	pp	1.37×10^{2}	10.3
pХe	1.39×10^{3}	7.8	pXe	3.06×10^2	2.2	pXe	1.44×10^{2}	2.8
PbXe	4.33×10^{3}	1.8×10^{-1}	PbXe	9.56×10^{2}	5.0×10^{-2}	PbXe	4.49×10^{2}	6.2×10^{-2}

2018/7/7

Zhenwei Yang Tsingh

High-*x* frontier: Drell-Yan

Unique acceptance (with an LHCb-like detector) compared to existing DY pA data used for nuclear PDF fit

Extremely large yields up to x₂ → 1 (pxe simulation), various targets
 Potential impact of DY measurements on nPDFs

Significant decrease of the uncertainties of u and d distributions

High-x frontier: constraining gluon nPDF
Gluon nPDF at high-x is among the least known
Uncertainties could be significantly reduced by measurements at AFTER@LHC (e.g. R_pXe)

>LHCb-like simulation

д рХе

Zhenwei Yang Tsinghua University

Spin physics: single transverse spin asymmetry

The single transverse spin asymmetry (STSA) A_N defined as

The A_N was predicted to be small in the collinear pQCD approach at leading twist, but measured to be large at high x in polarised collisions
 A^{Drell-Yan} at AFTER@LHC will put strict constraints on the Sivers effect for quarks
 A_N for open heavy-flavour production gives

 $A_N \equiv \overline{\mathcal{P}_{eff}} \overline{\sigma^{\uparrow} + \sigma^{\downarrow}}$

A_N for open heavy-flavour production gives access to the Sivers effect for gluons

Summary

A rich and unique physics program has been proposed with a fixed-target experiment at the LHC (AFTER@LHC), using the multi-TeV proton and lead beams

- Large-*x* frontiers, spin physics, and heavy-ion physics
 can be realised in a parasitic mode, without affecting the performance of the LHC
- Possible technical implementations are discussed
 - Beam extraction with bent crystal coupled to a solid target
 - Internal gas target inspired from SMOG@LHCb/HERMES/RHIC
- Physics projection studies with LHCb-and ALICE-like detectors
 Review on physics case and projected performances available (arXiv:1807.00603)

감사합니다 Natick Danke Ευχαριστίες Dalu В Thank You Köszönöm . Таск Спасибо Dank Gracias

Backup slides

Typical kinematic reach in x_2 and the scale m_T

2018/7/7

Zhenwei Yang

Tsinghua University

$d^2N/dyd\mu_B$ in the (μ_B , $y_{c.m.s.}$) plane

Target cell for polarised gas

2018/7/7

Zhenwei Yang T

Tsinghua University

Internal gas target: LHCb-SMOG

System for Measuring Overlap with Gas (SMOG)

- Initially designed for precise luminosity measurements
- Noble gas injected inside the beam vacuum at the interacting point
- p + He(Ne, Ar) and Pb + Ne(Ar) tested, completely parasitic
- Could be coupled to ALICE

Current limitation

- No specific pumping system
- Polarised gases cannot be used
- Gas flows in the beam pipe
- Kr/Xe maybe only at end of runs

Internal gas target: HERMES(-like) system

- Injecting gas in an open-end storage cell, used e.g. for more than 10 years at DESY E. Steffens,
 - Dedicated pumping system
 - Pressure in the cell significantly higher
 - Polarised H[↑] and D[↑] can be injected ballistically with high polarisation
 - Possible for polarised ³He¹
 or unpolarised heavy gas (Kr, Xe)
 - Implementation at LHCb under study
 - Could be used in ALICE, most likely very upstream of the current IP
 May need complementary vertexing capabilities

Typical luminosity: $L_{\rm int} \sim 10~{
m fb}^{-1}$ for p + H $\sim 100~{
m nb}^{-1}$ for Pb+H

Gas-jet target

Polarised H-jet polarimeter used at RHIC

- To measure the proton beam polarisation
- Compact device
- 9 vacuum chambers → 9 stages of differential pumping
- Polarised free atomic beam source (ABS)
- Expected Integrated luminosity over one LHC year
 - $L_{\text{int}} \sim 50 \text{ pb}^{-1} \text{ for } p + \text{H}$

