

Studying the nucleon structure, quarkonium production and spin effects with AFTER@LHC: Connections with COMPASS

Jean-Philippe Lansberg

IPN Orsay, CNRS/IN2P3, Univ. Paris-Sud, Université Paris-Saclay

COMPASS beyond 2020 Workshop March 21-22, 2016, CERN

AFTER@LHC Study group: http://after.in2p3.fr/after/index.php/Current_author_list

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 1 / 38

Part I

Why a new fixed-target experiment for High-Energy Physics now ?

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 2 / 38

Decisive advantages of Fixed-target experiments

• Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**

Decisive advantages of Fixed-target experiments

- Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**
- They exhibit 4 decisive features,
 - accessing the high Feynman $|x_F|$ domain $(x_F \equiv \frac{p_z}{p_{z \max}})$
 - achieving high luminosities,
 - varying the atomic mass of the target almost at will,
 - polarising the target.

イロト イ部ト イヨト イヨト 二日

Decisive advantages of Fixed-target experiments

- Fixed-target experiments offer specific **advantages** that are still nowadays **difficult to challenge by collider experiments**
- They exhibit 4 decisive features,
 - accessing the high Feynman $|x_F|$ domain $(x_F \equiv \frac{p_z}{p_{z \max}})$
 - achieving high luminosities,
 - varying the atomic mass of the target almost at will,
 - polarising the target.
- which are essential assets to study
 - rare proton fluctuations at large *x*
 - vector boson production near threshold and other rare processes
 - nuclear dependence in heavy-ion collisions
 - observables involving gluons and the target proton spin

· Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
 - Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
 - Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

 $\cdot\,$ Dynamics and spin of gluons inside (un)polarised nucleons

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
 - Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

- $\cdot\,$ Dynamics and spin of gluons inside (un)polarised nucleons
 - · Possible missing contribution to the proton spin: orbital angular momentum
 - $Test of the QCD factorisation framework [beyond the DY <math>A_N$ sign change]
 - · Determination of the linearly polarised gluons in unpolarised protons

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
 - Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- · Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

- $\cdot\,$ Dynamics and spin of gluons inside (un)polarised nucleons
 - · Possible missing contribution to the proton spin: orbital angular momentum
 - $Test of the QCD factorisation framework [beyond the DY <math>A_N$ sign change]
 - · Determination of the linearly polarised gluons in unpolarised protons
- Heavy-ion collisions towards large rapidities

- · Advance our understanding of the large-x gluon, antiquark and heavy-quark content in the nucleon & nucleus
 - Very large PDF uncertainties for $x \gtrsim 0.5$.

[could be crucial to characterise possible BSM discoveries]

- · Proton charm content important to high-energy neutrino & cosmic-rays physics
- EMC effect is an open problem; studying a possible gluon EMC effect is essential
- Relevance of nuclear PDF to understand the initial state of heavy-ion collisions
- · Search and study rare proton fluctuations

where one gluon carries most of the proton momentum

- $\cdot\,$ Dynamics and spin of gluons inside (un)polarised nucleons
 - · Possible missing contribution to the proton spin: orbital angular momentum
 - $Test of the QCD factorisation framework [beyond the DY <math>A_N$ sign change]
- · Determination of the linearly polarised gluons in unpolarised protons
- $\cdot\,$ Heavy-ion collisions towards large rapidities
- · Explore the longitudinal expansion of QGP formation with new hard probes
- Test the factorisation of cold nuclear effects from p + A to A + B collisions
- · Test the formation of azimuthal asymmetries: hydrodynamics vs. initial-state radiation

AFTER@LHC

Part II

A fixed-target experiment using the LHC beam(s): AFTER@LHC

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 5 / 38

• *pp* or *pA* collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

• *pp* or *pA* collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

• In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger

• *pp* or *pA* collisions with a 7 TeV p^+ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : **boost**: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$

• *pp* or *pA* collisions with a $7 \text{ TeV } p^+$ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
- Rather soft particles in the CM are in principle detectable

• *pp* or *pA* collisions with a $\frac{7 \text{ TeV } p^+}{p^+}$ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : **boost**: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
- Rather soft particles in the CM are in principle detectable
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• *pp* or *pA* collisions with a $\frac{7 \text{ TeV } p^+}{p^+}$ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : **boost**: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
- Rather soft particles in the CM are in principle detectable
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• The entire forward CM hemisphere $(y_{CM} > 0)$ within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$

• *pp* or *pA* collisions with a $\frac{7 \text{ TeV } p^+}{p^+}$ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
- Rather soft particles in the CM are in principle detectable
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- The entire forward CM hemisphere $(y_{CM} > 0)$ within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$
- Good thing: small forward detector = large acceptance

• *pp* or *pA* collisions with a $\frac{7 \text{ TeV } p^+}{p^+}$ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
- Rather soft particles in the CM are in principle detectable
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

イロト イヨト イヨト イヨト

- The entire forward CM hemisphere $(y_{CM} > 0)$ within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$
- Good thing: small forward detector = large acceptance
- Bad thing: high multiplicity ⇒ absorber ⇒ physics limitation

• *pp* or *pA* collisions with a $\frac{7 \text{ TeV } p^+}{p^+}$ on a fixed target occur at a CM energy

$$\sqrt{s} = \sqrt{2m_N E_p} \simeq 115 \text{ GeV}$$

- In a symmetric collider mode, $\sqrt{s} = 2E_p$, *i.e.* much larger
- Benefit of the fixed target mode : boost: $\gamma_{CM}^{Lab} = \frac{\sqrt{s}}{2m_p} \simeq 60$
- Rather soft particles in the CM are in principle detectable
- Angle in the Lab. frame: $\tan \theta = \frac{p_T}{p_{z,Lab}} = \frac{1}{\gamma\beta} \Rightarrow \theta \simeq 1^\circ$.

[Rapidity shift: $\Delta y = tanh^{-1}\beta \simeq 4.8$]

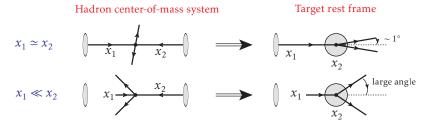
イロト イポト イヨト イヨト 二日

- The entire forward CM hemisphere $(y_{CM} > 0)$ within $0^{\circ} \le \theta_{Lab} \le 1^{\circ}$
- Good thing: small forward detector = large acceptance
- Bad thing: high multiplicity ⇒ absorber ⇒ physics limitation
- Let us simply avoid the forward region ! How ?

• Because of the boost $y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$

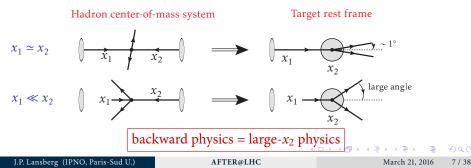
イロト イヨト イヨト イヨト

- Because of the boost $y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$
- The pseudo-rapidity coverage of LHCb, 2 ≤ η ≤ 5, approximately translates to a rapidity coverage in the *CM* of roughly −2.8 ≤ y_{CM} ≤ 0.2
- ALICE muon arm: $2.5 \le \eta \le 4 \Rightarrow -2.3 \le y_{CM} \le -0.8$


• □ ▶ • • □ ▶ • • □ ▶

- Because of the boost $y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$
- The pseudo-rapidity coverage of LHCb, 2 ≤ η ≤ 5, approximately translates to a rapidity coverage in the *CM* of roughly −2.8 ≤ y_{CM} ≤ 0.2
- ALICE muon arm: $2.5 \le \eta \le 4 \Rightarrow -2.3 \le y_{CM} \le -0.8$
- As a comparison, the PHENIX detector with its forward and backward muons arm only goes up to |y_{CM}| ≤ 2.2

• □ ▶ • • □ ▶ • • □ ▶

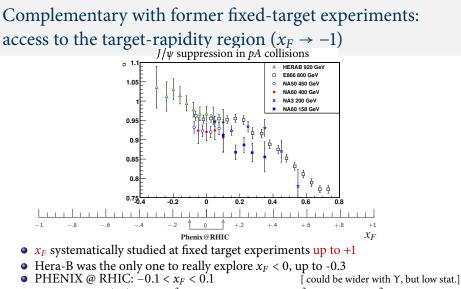

- Because of the boost $y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$
- The pseudo-rapidity coverage of LHCb, 2 ≤ η ≤ 5, approximately translates to a rapidity coverage in the *CM* of roughly −2.8 ≤ y_{CM} ≤ 0.2
- ALICE muon arm: $2.5 \le \eta \le 4 \Rightarrow -2.3 \le y_{CM} \le -0.8$
- As a comparison, the PHENIX detector with its forward and backward muons arm only goes up to |y_{CM}| ≤ 2.2
- In addition, there are advantages to go there:
 - · reduced multiplicities at large(r) angles
 - access to partons with momentum fraction $x \rightarrow 1$ in the target

- Because of the boost $y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$
- The pseudo-rapidity coverage of LHCb, 2 ≤ η ≤ 5, approximately translates to a rapidity coverage in the *CM* of roughly −2.8 ≤ y_{CM} ≤ 0.2
- ALICE muon arm: $2.5 \le \eta \le 4 \Rightarrow -2.3 \le y_{CM} \le -0.8$
- As a comparison, the PHENIX detector with its forward and backward muons arm only goes up to |y_{CM}| ≤ 2.2
- In addition, there are advantages to go there: reduced multiplicities at large(r) angles
 - access to partons with momentum fraction $x \rightarrow 1$ in the target

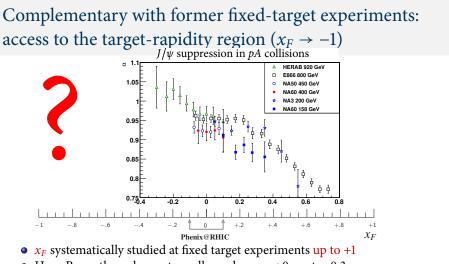
イロト イ部ト イヨト イヨト 二日

- Because of the boost $y_{CM} = 0 \Rightarrow y_{Lab} \simeq 4.8$
- The pseudo-rapidity coverage of LHCb, 2 ≤ η ≤ 5, approximately translates to a rapidity coverage in the *CM* of roughly −2.8 ≤ y_{CM} ≤ 0.2
- ALICE muon arm: $2.5 \le \eta \le 4 \Rightarrow -2.3 \le y_{CM} \le -0.8$
- As a comparison, the PHENIX detector with its forward and backward muons arm only goes up to |y_{CM}| ≤ 2.2
- In addition, there are advantages to go there: reduced multiplicities at large(r) angles
 - access to partons with momentum fraction $x \rightarrow 1$ in the target

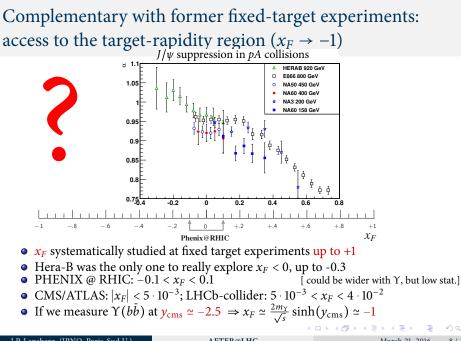
Complementary with former fixed-target experiments: access to the target-rapidity region $(x_F \rightarrow -1)$


Complementary with former fixed-target experiments: access to the target-rapidity region $(x_F \rightarrow -1)$ J/ψ suppression in pA collisions _{ອີ} 1.1 FRAB 920 GeV 366 800 GeV 1.05 50 450 GeV NA60 158 GeV 0.95 0.9 0.85 0.8 φ 0.75 -0.2 0 0.2 0.4 0.6 0.8 Xc

• x_F systematically studied at fixed target experiments up to +1


Complementary with former fixed-target experiments: access to the target-rapidity region $(x_F \rightarrow -1)$ J/ψ suppression in pA collisions _{ອີ} 1.1 RAB 920 GeV 66 800 GeV 1.05 A50 450 GeV NA60 158 GeV 0.95 0.9 0.85 0.8 ģ 0.75 -0.2 0 0.2 0.4 0.6 0.8 Xc

• x_F systematically studied at fixed target experiments up to +1


• Hera-B was the only one to really explore $x_F < 0$, up to -0.3

• CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb-collider: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

- Hera-B was the only one to really explore $x_F < 0$, up to -0.3 PHENIX @ RHIC: $-0.1 < x_F < 0.1$ [could be wider with Y, but low stat.]
- CMS/ATLAS: $|x_F| < 5 \cdot 10^{-3}$; LHCb-collider: $5 \cdot 10^{-3} < x_F < 4 \cdot 10^{-2}$

Part III

Colliding the LHC beams on fixed targets: 2 options

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 9 / 38

• • • • • • • • • • • •

The extracted-beam option

★ The LHC beam may be extracted using "Strong crystalline field" without any decrease in performance of the LHC !

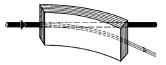
E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

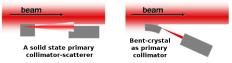
イロト イポト イヨト イヨ

The extracted-beam option

 \bigstar The LHC beam may be extracted using "Strong crystalline field"

without any decrease in performance of the LHC !

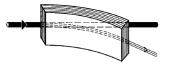

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131


 \bigstar The LHC beam may be extracted using "Strong crystalline field"

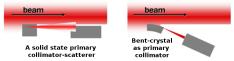
without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

\star Illustration for collimation



• □ ▶ • 4 □ ▶ • Ξ ▶


 \bigstar The LHC beam may be extracted using "Strong crystalline field"

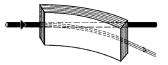
without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

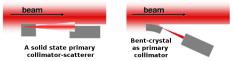
★ Illustration for collimation

★ Tests will be performed on the LHC beam:

LUA9 proposal approved by the LHCC


• □ ▶ • □ ▶ • □ ▶ • •

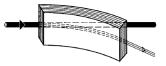
AFTER@LHC


 \bigstar The LHC beam may be extracted using "Strong crystalline field"

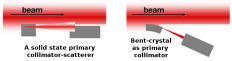
without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

\star Illustration for collimation


★ Tests will be performed on the LHC beam:

LUA9 proposal approved by the LHCC ★ 2 crystals and 2 goniometers already installed in the LHC beampipe succesful test at 8 TeV [CERN-SPSC-2015-039 (see section 4)].


 \bigstar The LHC beam may be extracted using "Strong crystalline field"

without any decrease in performance of the LHC !

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31, Rev. Mod. Phys. 77 (2005) 1131

★ Illustration for collimation

★ Tests will be performed on the LHC beam:

LUA9 proposal approved by the LHCC ★ 2 crystals and 2 goniometers already installed in the LHC beampipe

succesful test at 8 TeV [CERN-SPSC-2015-039 (see section 4)].

★ CRYSBEAM: ERC funded project to extract the LHC beams

with a bent crystal (G. Cavoto - Rome)

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

• Expected proton flux $\Phi_{beam} = 5 \times 10^8 p^+ s^{-1}$

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A) / A$$

[*l*: target thickness (for instance 1cm)]

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A) / A$$

[*l*: target thickness (for instance 1cm)]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• Integrated luminosity: $\int dt \mathcal{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC years]

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A) / A$$

[*l*: target thickness (for instance lcm)]

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

• Integrated luminosity: $\int dt \mathcal{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC years]

Target	ρ (g.cm ⁻³)	Α	L (µb ⁻¹ .s ⁻¹)	∫£ (fb ⁻¹ .yr ⁻¹)
1m Liq. H ₂	0.07	1	2000	20
1m Liq. D ₂	0.16	2	2400	24
1cm Be	1.85	9	62	.62
1cm Cu	8.96	64	42	.42
1cm W	19.1	185	31	.31
1cm Pb	11.35	207	16	.16

- Expected proton flux $\Phi_{beam} = 5 \times 10^8 p^+ s^{-1}$
- Instantaneous Luminosity:

$$\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A) / A$$

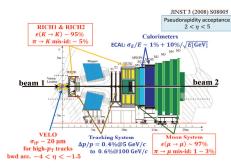
[*l*: target thickness (for instance lcm)]

• Integrated luminosity: $\int dt \mathcal{L}$ over 10^7 s for p^+ and 10^6 for Pb

[the so-called LHC years]

Target	ρ (g.cm ⁻³)	Α	L (µb ⁻¹ .s ⁻¹)	∫£ (fb ⁻¹ .yr ⁻¹)
1m Liq. H ₂	0.07	1	2000	20
1m Liq. D ₂	0.16	2	2400	24
1cm Be	1.85	9	62	.62
1cm Cu	8.96	64	42	.42
1cm W	19.1	185	31	.31
1cm Pb	11.35	207	16	.16

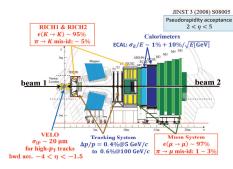
• For *pp* and *pd* collisions : $\mathcal{L}_{H_2/D_2} \simeq 20 \text{ fb}^{-1} y^{-1}$


3 orders of magnitude larger than RHIC (200 GeV)

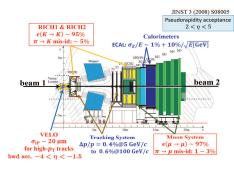
J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

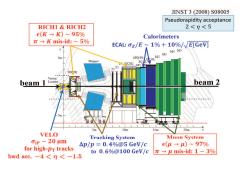
March 21, 2016 12 / 38


• • • • • • • • • • • •

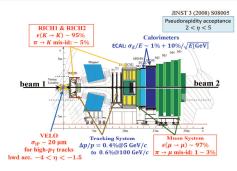
→ injection of Ne-gas into VELO


イロト イヨト イヨト イヨト

→ injection of Ne-gas into VELO

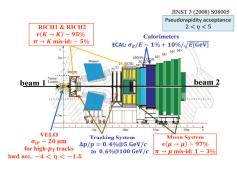

• Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]

→ injection of Ne-gas into VELO


- Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
- Short pilot runs: 2012 *p*Ne at $\sqrt{s_{NN}}$ = 87 GeV & 2013 PbNe at $\sqrt{s_{NN}}$ = 54 GeV

→ injection of Ne-gas into VELO

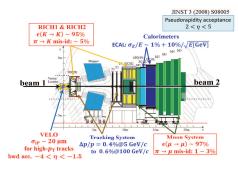
- Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
- Short pilot runs: 2012 *p*Ne at $\sqrt{s_{NN}}$ = 87 GeV & 2013 PbNe at $\sqrt{s_{NN}}$ = 54 GeV
- 12 hours of *p*Ne and 8 hours *p*He (09/2015); 3 days of *p*Ar in (10/2015)
- <u>1 week</u> of PbAr (12/2015)



→ injection of Ne-gas into VELO

イロト イポト イヨト イヨト

- Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
- Short pilot runs: 2012 *p*Ne at $\sqrt{s_{NN}}$ = 87 GeV & 2013 PbNe at $\sqrt{s_{NN}}$ = 54 GeV
- 12 hours of *p*Ne and 8 hours *p*He (09/2015); 3 days of *p*Ar in (10/2015)
- <u>1 week</u> of PbAr (12/2015)
- Noble gases favoured



→ injection of Ne-gas into VELO

イロト イポト イヨト イヨト

- Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
- Short pilot runs: 2012 *p*Ne at $\sqrt{s_{NN}}$ = 87 GeV & 2013 PbNe at $\sqrt{s_{NN}}$ = 54 GeV
- 12 hours of *p*Ne and 8 hours *p*He (09/2015); 3 days of *p*Ar in (10/2015)
- <u>1 week</u> of PbAr (12/2015)
- Noble gases favoured
- Target unpolarised with the current SMOG system

→ injection of Ne-gas into VELO

- Initially: low density Ne-gas injected into LHCb Vertex Locator [LHCb-CONF-2012-034]
- Short pilot runs: 2012 *p*Ne at $\sqrt{s_{NN}}$ = 87 GeV & 2013 PbNe at $\sqrt{s_{NN}}$ = 54 GeV
- 12 hours of *p*Ne and 8 hours *p*He (09/2015); 3 days of *p*Ar in (10/2015)
- <u>1 week</u> of PbAr (12/2015)
- Noble gases favoured
- Target unpolarised with the current SMOG system
- SMOG test : no decrease of LHC performances observed

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

Colliding the LHC beams on fixed targets

Luminosities with the internal-gas-target option

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 13 / 38

イロト イポト イヨト イヨ

• Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$

- Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$ • $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$
- $\Phi_{Pb} = 4.2 \times 10^{10} p^+ \times 11000 Hz = 4.6 \times 10^{14} Pb s^{-1}$

- Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$
- $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$
- $\Phi_{\rm Pb} = 4.2 \times 10^{10} p^+ \times 11000 \text{Hz} = 4.6 \times 10^{14} \text{Pb s}^{-1}$
- Usable gas zone ℓ , up to 100 cm

[1/2 Ampère !]

- Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$
- $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$ • $\Phi_{Pb} = 4.2 \times 10^{10} p^+ \times 11000 \text{Hz} = 4.6 \times 10^{14} \text{Pb s}^{-1}$
- Usable gas zone ℓ , up to 100 cm
- Target density: $\frac{\rho}{P} = c = \frac{A}{22400} \operatorname{bar}^{-1} g \, cm^{-3} \Rightarrow \mathcal{L} = \Phi_{beam} \times (\frac{N_A}{22400} \times P \times \ell)$

[1 mole of a perfect gas occupies 22 400 cm³ at 273 K and 1 bar]

- Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$ • $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$ [1/2 Ampère !] • $\Phi_{Pb} = 4.2 \times 10^{10} p^+ \times 11000 \text{Hz} = 4.6 \times 10^{14} \text{Pb s}^{-1}$
- Usable gas zone ℓ , up to 100 cm
- Target density: $\frac{\rho}{P} = c = \frac{A}{22400} \operatorname{bar}^{-1} g \, cm^{-3} \Rightarrow \mathcal{L} = \Phi_{beam} \times \left(\frac{\mathcal{N}_A}{22400} \times P \times \ell\right)$

[1 mole of a perfect gas occupies 22 400 cm³ at 273 K and 1 bar]

• For
$$P = 10^{-9}$$
 bar [7× that of SMOG in 2015, the 'vacuum' is 10⁻¹² bar], $\mathcal{L}_{pX(PbX)} = 10(10^{-3})\mu b^{-1} s^{-1}$

- Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$ • $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$ [1/2 Ampère !] • $\Phi_{Pb} = 4.2 \times 10^{10} p^+ \times 11000 \text{Hz} = 4.6 \times 10^{14} \text{Pb s}^{-1}$
- Usable gas zone ℓ , up to 100 cm
- Target density: $\frac{\rho}{P} = c = \frac{A}{22400} \text{bar}^{-1} g \, cm^{-3} \Rightarrow \mathcal{L} = \Phi_{beam} \times \left(\frac{\mathcal{N}_A}{22400} \times P \times \ell\right)$ [1 mole of a perfect gas occupies 22 400 cm³ at 273 K and 1 bar]

• For $P = 10^{-9}$ bar [7× that of SMOG in 2015, the 'vacuum' is 10^{-12} bar], $\mathcal{L}_{pX(PbX)} = 10(10^{-3})\mu b^{-1} s^{-1}$

• Provided that the runs can last as long, similar luminosities for pA than with the extracted beam options (up to 60 μ b⁻¹ s⁻¹)

イロト イ部ト イヨト イヨト 二日

• Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$ • $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$ [1/2 Ampère !] • $\Phi_{\rm Pb} = 4.2 \times 10^{10} p^+ \times 11000 \text{Hz} = 4.6 \times 10^{14} \text{Pb s}^{-1}$ • Usable gas zone ℓ , up to 100 cm • Target density: $\frac{\rho}{P} = c = \frac{A}{22400} \text{bar}^{-1} g \, cm^{-3} \Rightarrow \mathcal{L} = \Phi_{beam} \times (\frac{N_A}{22400} \times P \times \ell)$ [1 mole of a perfect gas occupies 22 400 cm³ at 273 K and 1 bar] • For $P = 10^{-9}$ bar [7× that of SMOG in 2015, the 'vacuum' is 10⁻¹² bar], $\mathcal{L}_{pX}(PbX) = 10(10^{-3})\mu b^{-1} s^{-1}$ • Provided that the runs can last as long, similar luminosities for pA than with the extracted beam options (up to 60 μ b⁻¹ s⁻¹) • To get 10 fb⁻¹y⁻¹ for pp, P should reach 10^{-7} bar \leftrightarrow target storage cell which could be polarised

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141; See E. Steffens's talk at PSTP 2015

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ○ ○ ○ ○

- Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$ • $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$ [1/2 Ampère !] • $\Phi_{Pb} = 4.2 \times 10^{10} p^+ \times 11000 \text{Hz} = 4.6 \times 10^{14} \text{Pb s}^{-1}$
- Usable gas zone ℓ , up to 100 cm
- Target density: $\frac{\rho}{P} = c = \frac{A}{22400} \text{bar}^{-1} g \, cm^{-3} \Rightarrow \mathcal{L} = \Phi_{beam} \times \left(\frac{\mathcal{N}_A}{22400} \times P \times \ell\right)$ [1 mole of a perfect gas occupies 22 400 cm³ at 273 K and 1 bar]
- For $P = 10^{-9}$ bar [7× that of SMOG in 2015, the 'vacuum' is 10⁻¹² bar], $\mathcal{L}_{pX(PbX)} = 10(10^{-3})\mu b^{-1} s^{-1}$
- Provided that the runs can last as long, similar luminosities for pA than with the extracted beam options (up to 60 μ b⁻¹ s⁻¹)
- To get 10 fb⁻¹y⁻¹ for *pp*, *P* should reach 10⁻⁷ bar ↔ target storage cell which could be polarised

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141; See E. Steffens's talk at PSTP 2015 Simply scaled up, this would give, for Pbp or PbA, 100 nb⁻¹y⁻¹.

 \Rightarrow For PbA, limitations would come first from the beam lifetime, pile-up and exp. DAQ

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

- Instantaneous Luminosity: $\mathcal{L} = \Phi_{beam} \times N_{target} = N_{beam} \times (\rho \times \ell \times \mathcal{N}_A)/A$ • $\Phi_{p^+} = 3.2 \times 10^{14} p^+ \times 11000 \text{Hz} = 3.5 \times 10^{18} p^+ \text{ s}^{-1}$ [1/2 Ampère !] • $\Phi_{Pb} = 4.2 \times 10^{10} p^+ \times 11000 \text{Hz} = 4.6 \times 10^{14} \text{Pb s}^{-1}$
- Usable gas zone ℓ , up to 100 cm
- Target density: $\frac{\rho}{P} = c = \frac{A}{22400} \text{bar}^{-1} g \, cm^{-3} \Rightarrow \mathcal{L} = \Phi_{beam} \times \left(\frac{\mathcal{N}_A}{22400} \times P \times \ell\right)$ [1 mole of a perfect gas occupies 22 400 cm³ at 273 K and 1 bar]
- For $P = 10^{-9}$ bar [7× that of SMOG in 2015, the 'vacuum' is 10⁻¹² bar], $\mathcal{L}_{pX(PbX)} = 10(10^{-3})\mu b^{-1} s^{-1}$
- Provided that the runs can last as long, similar luminosities for pA than with the extracted beam options (up to 60 μ b⁻¹ s⁻¹)
- To get 10 fb⁻¹y⁻¹ for *pp*, *P* should reach 10⁻⁷ bar ↔ target storage cell which could be polarised

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141; See E. Steffens's talk at PSTP 2015 Simply scaled up, this would give, for Pbp or PbA, $100 \text{ nb}^{-1}y^{-1}$.

 \Rightarrow For PbA, limitations would come first from the beam lifetime, pile-up and exp. DAQ

• A specific gas target is a competitive alternative to the beam extraction

Advances in High Energy Physics Volume 2015, Article ID 463141, 6 pages http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

Colin Barschel,¹ Paolo Lenisa,² Alexander Nass,³ and Erhard Steffens⁴

¹LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland

²University of Ferrara and INFN, 44100 Ferrara, Italy

³Institut für Kernphysik, FZJ, 52425 Jülich, Germany

⁴Physics Institute, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1 H, 2 H, or 3 He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10^{33} /cm² s can be produced with existing techniques.

 $^{1}T = 300K$

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 14 / 38

Advances in High Energy Physics Volume 2015, Article ID 463141, 6 pages http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

Colin Barschel,¹ Paolo Lenisa,² Alexander Nass,³ and Erhard Steffens⁴

¹LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland

²University of Ferrara and INFN, 44100 Ferrara, Italy

³Institut für Kernphysik, FZJ, 52425 Jülich, Germany

$$\int dt \mathcal{L} = 10^{33} \text{cm}^{-2} s^{-1} \stackrel{\Delta t = 10^7 \, \text{s}}{=} 10 \, \text{fb}^{-1}!$$

⁴Physics Institute, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1 H, 2 H, or 3 He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10^{33} /cm² s can be produced with existing techniques.

 $^{1}T = 300K$

J.P. Lansberg (IPNO, Paris-Sud U.)

March 21, 2016 14 / 38

Advances in High Energy Physics Volume 2015, Article ID 463141, 6 pages http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

Colin Barschel,¹ Paolo Lenisa,² Alexander Nass,³ and Erhard Steffens⁴

¹LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland

²University of Ferrara and INFN, 44100 Ferrara, Italy

³Institut für Kernphysik, FZJ, 52425 Jülich, Germany

$$\int dt \mathcal{L} = 10^{33} \text{ cm}^{-2} s^{-1} \stackrel{\Delta t = 10^7 \, \text{s}}{=} 10 \, \text{fb}^{-1}!$$

⁴Physics Institute, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1 H, 2 H, or 3 He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10^{33} /cm² s can be produced with existing techniques.

Figures-of-merit Comparison : FoM = $P^2 \times \{f^2, \alpha^2\} \times \theta$ [E. Steffens at PSTP 2015] FoM* = $\phi \times$ FoM = $P^2 \times \{f^2, \alpha^2\} \times \phi \times \theta = P^2 \times f^2 \times \mathcal{L}$

 $^{1}T = 300K$

J.P. Lansberg (IPNO, Paris-Sud U.)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Advances in High Energy Physics Volume 2015, Article ID 463141, 6 pages http://dx.doi.org/10.1155/2015/463141

A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions

Colin Barschel,¹ Paolo Lenisa,² Alexander Nass,³ and Erhard Steffens⁴

¹LHCb Collaboration, CERN, 1211 Geneva 23, Switzerland

²University of Ferrara and INFN, 44100 Ferrara, Italy

³Institut für Kernphysik, FZJ, 52425 Jülich, Germany

$$\int dt \mathcal{L} = 10^{33} \text{ cm}^{-2} s^{-1} \stackrel{\Delta t = 10^7 \, \text{s}}{=} 10 \, \text{fb}^{-1}!$$

⁴Physics Institute, Friedrich-Alexander University Erlangen-Nürnberg, 91058 Erlangen, Germany

We discuss the application of an open storage cell as gas target for a proposed LHC fixed-target experiment AFTER@LHC. The target provides a high areal density at minimum gas input, which may be polarized 1 H, 2 H, or 3 He gas or heavy inert gases in a wide mass range. For the study of single-spin asymmetries in pp interaction, luminosities of nearly 10^{33} /cm² s can be produced with existing techniques.

Figures-of-merit Comparison : FoM = $P^2 \times \{f^2, \alpha^2\} \times \theta$ [E. Steffens at PSTP 2015]

$FoM^* = \phi \times FoM = P^2 \times$	$\{f^2, \alpha^2\} \times \phi \times \theta = P^2 \times f^2 \times \mathcal{L}$
--	---

Target and mode	Target characteristics	FoM*
NH3 UVa-target & extr. beam		
NH3 COMPASS & extr. beam		$3.5 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$
'HERMES' H target ¹ & LHC beam	$P = 0.85; \alpha = 0.95; \theta = 2.5 \times 10^{14} \text{ cm}^{-2}$	$6 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$

 $^{1}T = 300K$

J.P. Lansberg (IPNO, Paris-Sud U.)

Part IV

AFTER@LHC: the case of spin physics

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 15 / 38

• □ ▶ • 4 □ ▶ • □ ▶

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 16 / 38

イロト イポト イヨト イヨ

• Quark/Gluon Sivers function: distortion in the distribution of an unpolarised partons with momentum fraction *x* and transverse momentum k_{\perp} due to the proton transverse polarisation : $f_{1T}^{\perp}(x, \vec{k}_{\perp}^2)$

- Quark/Gluon Sivers function: distortion in the distribution of an unpolarised partons with momentum fraction *x* and transverse momentum k_{\perp} due to the proton transverse polarisation : $f_{1T}^{\perp}(x, \vec{k}_{\perp}^2)$
- First suggested by D. Sivers to explain the large observed left-right single transverse spin asymmetries A_N in $p^{\uparrow}p \rightarrow \pi X$

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- Quark/Gluon Sivers function: distortion in the distribution of an unpolarised partons with momentum fraction *x* and transverse momentum k_{\perp} due to the proton transverse polarisation : $f_{1T}^{\perp}(x, \vec{k}_{\perp}^2)$
- First suggested by D. Sivers to explain the large observed left-right single transverse spin asymmetries A_N in $p^{\uparrow}p \rightarrow \pi X$
- non-zero quark/gluon Sivers function ⇒ non-zero quark/gluon OAM

• □ ▶ • • □ ▶ • • □ ▶

The quest for the orbital angular momentum of the quarks and gluons

- Quark/Gluon Sivers function: distortion in the distribution of an unpolarised partons with momentum fraction *x* and transverse momentum k_{\perp} due to the proton transverse polarisation : $f_{1T}^{\perp}(x, \vec{k}_{\perp}^2)$
- First suggested by D. Sivers to explain the large observed left-right single transverse spin asymmetries A_N in $p^{\uparrow}p \rightarrow \pi X$
- non-zero quark/gluon Sivers function ⇒ non-zero quark/gluon OAM
- Process dependence predicted: $f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)_{Drell-Yan} = -f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)_{Semi-Inclusive DIS}$

The quest for the orbital angular momentum of the quarks and gluons

- Quark/Gluon Sivers function: distortion in the distribution of an unpolarised partons with momentum fraction *x* and transverse momentum k_{\perp} due to the proton transverse polarisation : $f_{1T}^{\perp}(x, \vec{k}_{\perp}^2)$
- First suggested by D. Sivers to explain the large observed left-right single transverse spin asymmetries A_N in $p^{\uparrow}p \rightarrow \pi X$
- non-zero quark/gluon Sivers function ⇒ non-zero quark/gluon OAM
- Process dependence predicted: $f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)_{Drell-Yan} = -f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)_{Semi-Inclusive DIS}$
- Several experiments wish to measure $A_N^{Drell-Yan}$ to extract $f_{1T}^{\perp q}(x, \vec{k}_{\perp}^2)$
 - COMPASS: valence quarks using a pion beam (160 GeV)

on a polarised proton target

• E1027: valence quarks using a polarised proton beam (120 GeV)

on an unpolarised proton target

• E1039: sea quarks using an unpolarised proton beam (120 GeV)

on a polarised proton target

SSA in Drell-Yan studies with AFTER@LHC

Some parameters of existing and proposed polarised DY experiments. S.J. Brodsky, F. Fleuret, C. Hadjidakis, JPL, Phys. Rep. 522 (2013) 239

	v. Daron	ie, r. Brauamanie,	n. Martin, 11	og. I ui t. Huei.	1 1133. 05 (2010) 2
Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	x_p^{\dagger}	\mathcal{L} (nb ⁻¹ s ⁻¹)
AFTER	$p + p^{\uparrow}$	7000	115	0.01 ÷ 0.9	O(1)
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	0.2 ÷ 0.3	2
COMPASS (low mass)	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
P1039	$p + p^{\uparrow}$	120	15	0.1 ÷ 0.3	400-1000
P1027	$p^{\uparrow} + p$	120	15	$0.35 \div 0.85$	400-1000
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA (low mass)	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC Int.Target (1,2)	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	(2,60)

V. Barone, F. Bradamante, A. Martin, Prog. Part. Nucl. Phys. 65 (2010) 267.

SSA in Drell-Yan studies with AFTER@LHC

Some parameters of existing and proposed polarised DY experiments.

	V. Baron	ie, F. Bradamante,	A. Martin, Pr	og. Part. Nucl.	Phys. 65 (2010) 2
Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	x_p^{\dagger}	\mathcal{L} (nb ⁻¹ s ⁻¹)
AFTER	$p + p^{\uparrow}$	7000	115	0.01 ÷ 0.9	$\mathcal{O}(1)$
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	$0.2 \div 0.3$	2
COMPASS (low mass)	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
P1039	$p + p^{\uparrow}$	120	15	0.1 ÷ 0.3	400-1000
P1027	$p^{\uparrow} + p$	120	15	$0.35 \div 0.85$	400-1000
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA (low mass)	$\bar{p} + p^{\dagger}$	15	5.5	$0.2 \div 0.4$	0.2
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC Int.Target (1,2)	$p^{\uparrow} + p$	250	22	0.2 ÷ 0.5	(2,60)

 For AFTER, L corresponds to the Barschel *et al.* setup or an equivalent of 50 cm liquid H target ⇒ could yield up to 10 fb⁻¹ per year

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

SSA in Drell-Yan studies with AFTER@LHC

Some parameters of existing and proposed polarised DY experiments. S.J. Brodsky, F. Fleuret, C. Hadjidakis, JPL, Phys. Rep. 522 (2013) 23:

	v. Daron	e, r. Drauamanie,	,,,,	og. I alt. Huel.	1 11 3. 05 (2010) 2
Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	x_p^{\dagger}	\mathcal{L} (nb ⁻¹ s ⁻¹)
AFTER	$p + p^{\uparrow}$	7000	115	0.01 ÷ 0.9	$\mathcal{O}(1)$
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	0.2 ÷ 0.3	2
COMPASS (low mass)	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
P1039	$p + p^{\uparrow}$	120	15	0.1 ÷ 0.3	400-1000
P1027	$p^{\uparrow} + p$	120	15	$0.35 \div 0.85$	400-1000
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA (low mass)	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC Int.Target (1,2)	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	(2,60)

S.J. Brodsky, F. Fleuret, C. Hadjidakis, JPL, Phys. Rep. 522 (2013) 239 V. Barone, F. Bradamante, A. Martin, Prog. Part, Nucl. Phys. 65 (2010) 267.

• For AFTER, \mathcal{L} corresponds to the Barschel *et al.* setup

or an equivalent of 50 cm liquid *H* target \Rightarrow could yield up to 10 fb⁻¹ per year

• It is admittedly an apple-to-pear comparison since the precision on *A_N* depends on the polarisation of the target/beam and on the cross-sections.

• □ ▶ • • □ ▶ • • □ ▶

SSA in Drell-Yan studies with AFTER@LHC

Some parameters of existing and proposed polarised DY experiments. S.J. Brodsky, F. Fleuret, C. Hadjidakis, JPL, Phys. Rep. 522 (2013) 239

	V. Baron	ie, F. Bradamante,	A. Martin, Pr	og. Part. Nucl.	Phys. 65 (2010) 2
Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	x_p^{\dagger}	\mathcal{L} (nb ⁻¹ s ⁻¹)
AFTER	$p + p^{\uparrow}$	7000	115	0.01 ÷ 0.9	O(1)
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	$0.2 \div 0.3$	2
COMPASS (low mass)	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
P1039	$p + p^{\uparrow}$	120	15	0.1 ÷ 0.3	400-1000
P1027	$p^{\uparrow} + p$	120	15	$0.35 \div 0.85$	400-1000
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA (low mass)	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC Int.Target (1,2)	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	(2,60)

- For AFTER, *L* corresponds to the Barschel *et al.* setup
 - or an equivalent of 50 cm liquid H target \Rightarrow could yield up to 10 fb⁻¹ per year
- It is admittedly an apple-to-pear comparison since the precision on A_N
 - depends on the polarisation of the target/beam and on the cross-sections.
- Nota: At RHIC energy, Drell-Yan studies are very delicate

[not yet done for unpolarised *pp* collisions]

イロト イポト イヨト

SSA in Drell-Yan studies with AFTER@LHC

Some parameters of existing and proposed polarised DY experiments.

	V. Baron	ie, F. Bradamante,	A. Martin, Pr	og. Part. Nucl.	Phys. 65 (2010) 2
Experiment	particles	energy (GeV)	\sqrt{s} (GeV)	x_p^{\dagger}	\mathcal{L} (nb ⁻¹ s ⁻¹)
AFTER	$p + p^{\uparrow}$	7000	115	0.01 ÷ 0.9	$\mathcal{O}(1)$
COMPASS	$\pi^{\pm} + p^{\uparrow}$	160	17.4	$0.2 \div 0.3$	2
COMPASS (low mass)	$\pi^{\pm} + p^{\uparrow}$	160	17.4	~ 0.05	2
P1039	$p + p^{\uparrow}$	120	15	0.1 ÷ 0.3	400-1000
P1027	$p^{\uparrow} + p$	120	15	$0.35 \div 0.85$	400-1000
RHIC	$p^{\uparrow} + p$	collider	500	$0.05 \div 0.1$	0.2
J-PARC	$p^{\uparrow} + p$	50	10	$0.5 \div 0.9$	1000
PANDA (low mass)	$\bar{p} + p^{\uparrow}$	15	5.5	$0.2 \div 0.4$	0.2
PAX	$p^{\uparrow} + \bar{p}$	collider	14	$0.1 \div 0.9$	0.002
NICA	$p^{\uparrow} + p$	collider	20	$0.1 \div 0.8$	0.001
RHIC Int.Target (1,2)	$p^{\uparrow} + p$	250	22	$0.2 \div 0.5$	(2,60)

• For AFTER, \mathcal{L} corresponds to the Barschel *et al.* setup

or an equivalent of 50 cm liquid H target \Rightarrow could yield up to 10 fb⁻¹ per year

- It is admittedly an apple-to-pear comparison since the precision on *A_N* depends on the polarisation of the target/beam and on the cross-sections.
- Nota: At RHIC energy, Drell-Yan studies are very delicate

[not yet done for unpolarised pp collisions] • AFTER could be the only project able to reach $x^{\uparrow} = 10^{-2}$ and $x^{\uparrow} > 0.74$ $\neq p$ $\gg 2$ ~ 2.6 J.P. Lansberg (IPNO, Paris-Sud U.) AFTER@LHC March 21, 2016 17 / 38

SSA in Drell-Yan studies with AFTER@LHC

Expected asymmetries

The target-rapidity region (negative x_F) corresponds to high x^{\uparrow} where the k_T -spin correlation is the largest

• □ ▶ • • □ ▶ • • □ ▶

SSA in Drell-Yan studies with AFTER@LHC

Expected asymmetries

The target-rapidity region (negative x_F) corresponds to high x^{\uparrow}

where the k_T -spin correlation is the largest

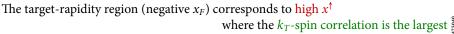
How large ?

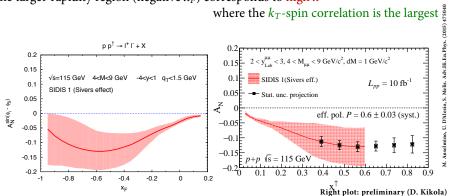
Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER)

Tianbo Liu¹, Bo-Qiang Ma^{1,2,a}

¹School of Physics and State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
²Center for High Energy Physics, Peking University, Beijing 100871, China

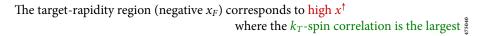
Transverse Single-Spin Asymmetries in Proton-Proton Collisions at the AFTER@LHC Experiment in a TMD Factorisation Scheme

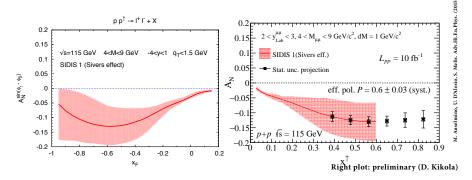

M. Anselmino,^{1,2} U. D'Alesio,^{3,4} and S. Melis¹


¹Dipartimento di Fisica, Università di Torino, Via P. Giuria I, 10125 Torino, Italy ¹NFN, Sezione di Torino, Via P. Giuria I, 10125 Torino, Italy ³Dipartimento di Fisica, Università di Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy ¹NFN, Sezione di Cagliari, CP 170, 09042 Monserrato, Italy

AFTER@LHC

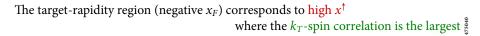
SSA in Drell-Yan studies with AFTER@LHC

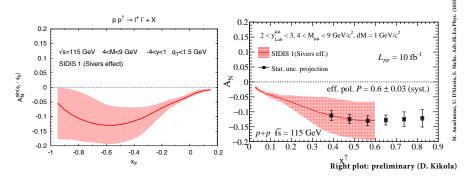

Expected asymmetries



SSA in Drell-Yan studies with AFTER@LHC

Expected asymmetries





• With 10 fb⁻¹, one can indeed expect up to 10^6 DY events in 4 < M < 9 GeV

SSA in Drell-Yan studies with AFTER@LHC

Expected asymmetries

• With 10 fb⁻¹, one can indeed expect up to 10^6 DY events in 4 < M < 9 GeV

• *W* and *Z* should be reachable with 10 fb⁻¹: $x^{\uparrow} \simeq 0.7 \div 0.8$

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

• It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

- It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]
- Theoretical complications (~ DY sign change) suggest to analyse

multiple probes

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

- It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]
- Theoretical complications (~ DY sign change) suggest to analyse

multiple probes

• quarkonia $(J/\psi, \Upsilon, \chi_c, \eta_c, ...)$

F. Yuan, PRD 78 (2008) 014024; A. Schaefer, J. Zhou, PRD (2013) PHENIX Phys.Rev. D86 (2012) 099904

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

- It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]
- Theoretical complications (~ DY sign change) suggest to analyse

multiple probes

- quarkonia $(J/\psi, \Upsilon, \chi_c, \eta_c, ...)$
- *B* & *D* meson production

F. Yuan, PRD 78 (2008) 014024; A. Schaefer, J. Zhou, PRD (2013) PHENIX Phys.Rev. D86 (2012) 099904

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

M. Anselmino, et al. PRD 70 (2004) 074025.

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

- It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]
- Theoretical complications (~ DY sign change) suggest to analyse

multiple probes

- quarkonia $(J/\psi, \Upsilon, \chi_c, \eta_c, ...)$
- *B* & *D* meson production
- γ, γ-jet, γ γ

F. Yuan, PRD 78 (2008) 014024; A. Schaefer, J. Zhou, PRD (2013) PHENIX Phys.Rev. D86 (2012) 099904

M. Anselmino, et al. PRD 70 (2004) 074025.

A. Bacchetta, et al., PRL 99 (2007) 212002; J.W. Qiu, et al., PRL 107 (2011) 062001

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

- It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]
- Theoretical complications (~ DY sign change) suggest to analyse

multiple probes

- quarkonia $(J/\psi, \Upsilon, \chi_c, \eta_c, ...)$
- *B* & *D* meson production
- γ, γ-jet, γ γ

F. Yuan, PRD 78 (2008) 014024; A. Schaefer, J. Zhou, PRD (2013) PHENIX Phys.Rev. D86 (2012) 099904

M. Anselmino, et al. PRD 70 (2004) 074025.

A. Bacchetta, et al., PRL 99 (2007) 212002; J.W. Qiu, et al., PRL 107 (2011) 062001

• $J/\psi + \gamma$: the cleanest; sensitive to gluons up to $x^{\uparrow} \simeq 0.5$

W. den Dunnen, J.P.L., C. Pisano, M. Schlegel, PRL 112, 212001 (2014); J.P.L., C. Pisano, M. Schlegel (work in pogress)

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

- It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]
- Theoretical complications (~ DY sign change) suggest to analyse

multiple probes

- quarkonia $(J/\psi, \Upsilon, \chi_c, \eta_c, ...)$
- *B* & *D* meson production
- γ, γ-jet, γ γ

F. Yuan, PRD 78 (2008) 014024; A. Schaefer, J. Zhou, PRD (2013) PHENIX Phys.Rev. D86 (2012) 099904

M. Anselmino, et al. PRD 70 (2004) 074025.

A. Bacchetta, et al., PRL 99 (2007) 212002; J.W. Qiu, et al., PRL 107 (2011) 062001

イロト イヨト イヨト イヨト

• $J/\psi + \gamma$: the cleanest; sensitive to gluons up to $x^{\uparrow} \simeq 0.5$

W. den Dunnen, J.P.L., C. Pisano, M. Schlegel, PRL 112, 212001 (2014); J.P.L., C. Pisano, M. Schlegel (work in pogress)

• All these measurements can be done with AFTER@LHC with the required precision: $10^9 J/\psi$, $10^6 \Upsilon$, $10^8 B$, etc ...

• Gluon Sivers effect essentially unconstrained

D. Boer, C. Lorcé, C. Pisano, J. Zhou. Adv. Hi. En. Phys. (2015) ID:371396

- It can be measured via A_N of gluon sensitive probes [as opposed to DY for quarks]
- Theoretical complications (~ DY sign change) suggest to analyse

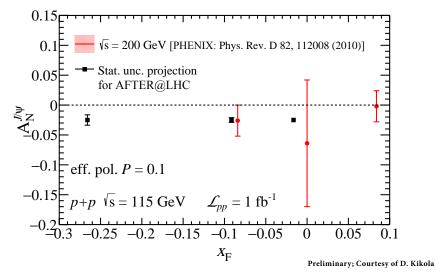
multiple probes

- quarkonia $(J/\psi, \Upsilon, \chi_c, \eta_c, ...)$
- *B* & *D* meson production
- γ, γ-jet, γ γ

F. Yuan, PRD 78 (2008) 014024; A. Schaefer, J. Zhou, PRD (2013) PHENIX Phys.Rev. D86 (2012) 099904

M. Anselmino, et al. PRD 70 (2004) 074025.

A. Bacchetta, et al., PRL 99 (2007) 212002; J.W. Qiu, et al., PRL 107 (2011) 062001


• $J/\psi + \gamma$: the cleanest; sensitive to gluons up to $x^{\uparrow} \simeq 0.5$

W. den Dunnen, J.P.L., C. Pisano, M. Schlegel, PRL 112, 212001 (2014); J.P.L., C. Pisano, M. Schlegel (work in pogress)

- All these measurements can be done with AFTER@LHC with the required precision: $10^9 J/\psi$, $10^6 \Upsilon$, $10^8 B$, etc ...
- Hint of nonzero gluon Sivers effect in $ep^{\uparrow} \rightarrow hh$: COMPASS JPhys. Conf.S. 678 (2016) 012055

 $J/\psi A_N$ projection (vs. current PHENIX data)

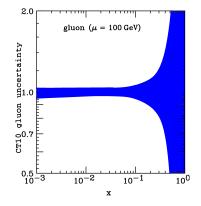
Nota: P was choosen to be smaller than above, otherwise the statistical uncertainties are invisible

J.P. Lansberg (IPNO, Paris-Sud U.)

March 21, 2016 20 / 38

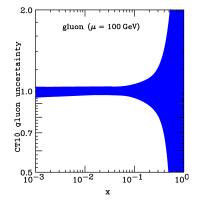
Part V

AFTER@LHC: the case for gluon PDF and quarkonium physics


J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

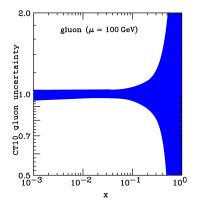
March 21, 2016 21 / 38


• Gluon distribution at mid, high and ultra-high *x* in the proton

- Gluon distribution at mid, high and ultra-high *x* in the proton
 - Not easily accessible in DIS
 - translates into very large uncertainties

- Gluon distribution at mid, high and ultra-high *x* in the proton
 - Not easily accessible in DIS
 - translates into very large uncertainties

Accessible thanks gluon sensitive probes,



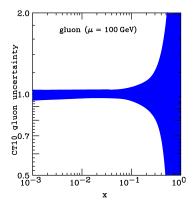
- Gluon distribution at mid, high and ultra-high *x* in the proton
 - Not easily accessible in DIS
 - translates into very large uncertainties

Accessible thanks gluon sensitive probes,

• quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

- Gluon distribution at mid, high and ultra-high *x* in the proton
 - Not easily accessible in DIS
 - translates into very large uncertainties


Accessible thanks gluon sensitive probes,

• quarkonia

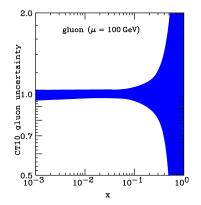
see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

• Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

- Gluon distribution at mid, high and ultra-high *x* in the proton
 - Not easily accessible in DIS
 - translates into very large uncertainties

Accessible thanks gluon sensitive probes,


• quarkonia

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

• Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

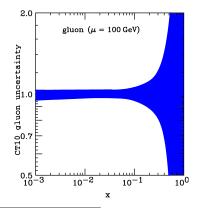
• jets (
$$P_T \in [20, 40]$$
 GeV)

AFTER@LHC

- Gluon distribution at mid, high and ultra-high *x* in the proton
 - Not easily accessible in DIS
 - translates into very large uncertainties

Accessible thanks gluon sensitive probes,

• quarkonia


see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

• Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

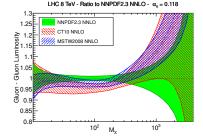
• jets (
$$P_T \in [20, 40]$$
 GeV)

Multiple probes needed to check factorisation

- Gluon distribution at mid, high and ultra-high *x* in the proton
 - Not easily accessible in DIS
 - translates into very large uncertainties

Accessible thanks gluon sensitive probes,

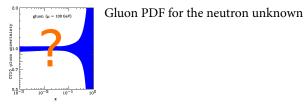
• quarkonia

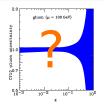

see a recent study by D. Diakonov et al., JHEP 1302 (2013) 069

• Isolated photon

see the recent survey by D. d'Enterria, R. Rojo, Nucl.Phys. B860 (2012) 311

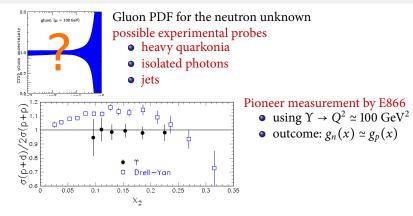
• jets (
$$P_T \in [20, 40]$$
 GeV)

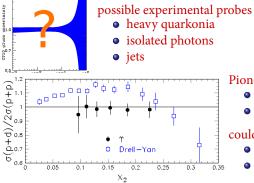

Large-*x* gluons: important to characterise some possible BSM findings at the LHC



J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC


March 21, 2016 22 / 38



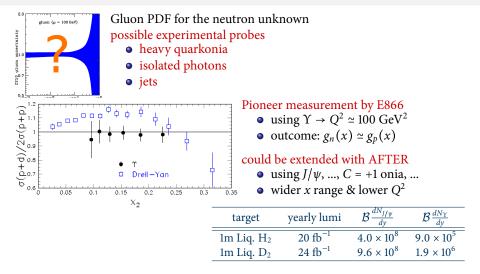
Gluon PDF for the neutron unknown possible experimental probes

- heavy quarkonia
- isolated photons
- jets

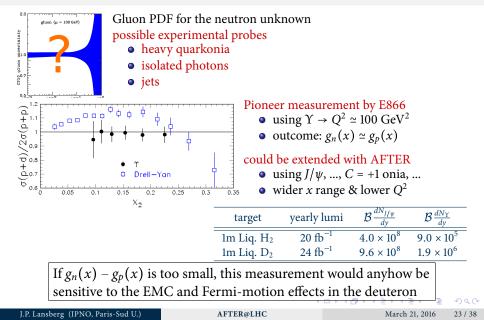
Gluon PDF for the neutron unknown

otons

Pioneer measurement by E866


• using
$$\Upsilon \to Q^2 \simeq 100 \text{ GeV}^2$$

• outcome:
$$g_n(x) \simeq g_p(x)$$


could be extended with AFTER

• using
$$J/\psi$$
, ..., $C = +1$ onia, ...

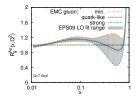
gluon ($\mu = 100 \text{ GeV}$)

pd physics: gluons in the neutron and the deuteron

Gluons in nuclei

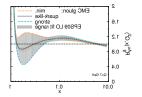
pA studies: large-*x* gluon content of the nucleus

J.P. Lansberg (IPNO, Paris-Sud U.)

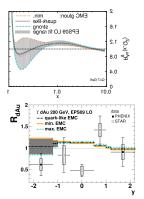

AFTER@LHC

March 21, 2016 24 / 38

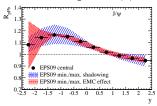
• • • • • • • • • • • •

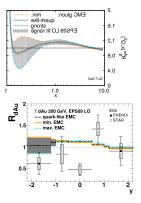

Gluons in nuclei

- Large-*x* gluon nPDF: unknown
- Gluon EMC effect: unknown

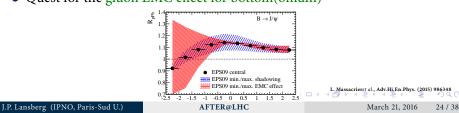


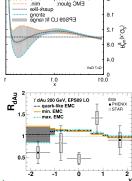
Gluons in nuclei


- Large-*x* gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from Y data at RHIC

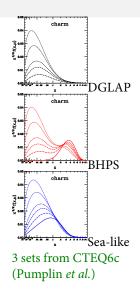


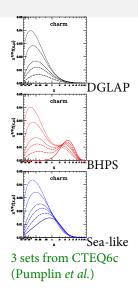
- Large-*x* gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from Y data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC :




- Large-*x* gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from Y data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC :
- Quest for the gluon antishadowing with J/ψ

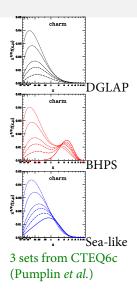
- Large-*x* gluon nPDF: unknown
- Gluon EMC effect: unknown
- Hint from Y data at RHIC
- Strongly limited in terms of statistics after 10 years of RHIC :
- Quest for the gluon antishadowing with J/ψ
- Quest for the gluon EMC effect for bottom(onium)

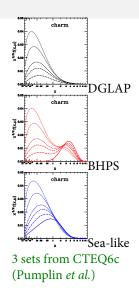



• Heavy-quark distributions (at high *x*_{*B*})

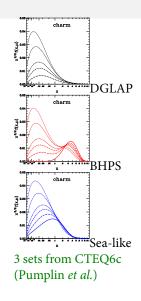
イロト イポト イヨト イヨ

- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down intrinsic charm, ... at last

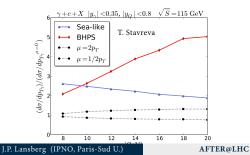

- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down intrinsic charm, ... at last
 - c(x) & b(x) & the 5-flavour scheme at large x for BSM studies F.Maltoni,..., JHEP 1207 (2012) 022

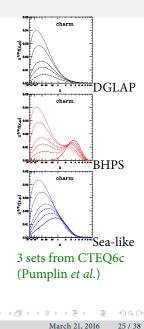

Heavy-quark content of the proton

- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down intrinsic charm, ... at last
 - $c(x) \otimes b(x) \otimes$ the 5-flavour scheme at large x for BSM studies F.Maltoni,..., JHEP 1207 (2012) 022


requires

- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down intrinsic charm, ... at last
 - c(x) & b(x) & the 5-flavour scheme at large x for BSM studies E.Maltoni,..., JHEP 1207 (2012) 022
 - requires
 - several complementary measurements


- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down intrinsic charm, ... at last
 - c(x) & b(x) & the 5-flavour scheme at large x for BSM studies F.Maltoni,..., JHEP 1207 (2012) 022
 requires
 - several complementary measurements
 - good coverage in the target-rapidity region



- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down intrinsic charm, ... at last
 - c(x) & b(x) & the 5-flavour scheme at large x for BSM studies F.Maltoni,..., JHEP 1207 (2012) 022
 requires
 - several complementary measurements
 - good coverage in the target-rapidity region
 - high luminosity to reach large *x*

- Heavy-quark distributions (at high *x*_{*B*})
 - Pin down intrinsic charm, ... at last
 - c(x) & b(x) & the 5-flavour scheme at large x for BSM studies F.Maltoni,..., JHEP 1207 (2012) 022
 - requires
 - several complementary measurements
 - good coverage in the target-rapidity region
 - high luminosity to reach large *x*

QCD uncertainties in PeV neutrino studies

QCD uncertainties in PeV neutrino studies

• Uncertainties in atmospheric neutrino flux (background of cosmic neutrinos) dominated by those on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

QCD uncertainties in PeV neutrino studies

• Uncertainties in atmospheric neutrino flux (background of cosmic neutrinos) dominated by those on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

- Recent progress in addressing such uncertainties on the nuclear side R. Enberg, et al., PRD 78 043005,2008;
 - R. Gauld, et al., JHEP 1511 (2015) 009

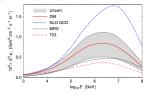


FIG. 6 (color online). Prompt muon neutrino fluxes obtained in perturbative QCD. The shaded area represents the theoretical uncertainty in the prompt neutrino flux evaluated in this paper, and the sold line in the band is our standard result. The dashed curve is the NLO perturbative QCD calculation of Ref. [14] is the samaration model result of Ref. [16] (MSR); and the dashdotted curve is the LO perturbative QCD calculation of Ref. [15] (TG).

イロト イポト イヨト イヨ

QCD uncertainties in PeV neutrino studies

• Uncertainties in atmospheric neutrino flux (background of cosmic neutrinos) dominated by those on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

- Recent progress in addressing such uncertainties on the nuclear side R. Enberg, et al., PRD 78 043005,2008;
 - R. Gauld, et al., JHEP 1511 (2015) 009

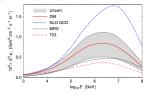


FIG. 6 (color online). Prompt muon neutrino fluxes obtained in perturbative QCD. The shaded area represents the theoretical uncertainty in the prompt neutrino flux evaluated in this paper, and the sold line in the band is our standard result. The dashed curve is the NLO perturbative QCD calculation of Ref. [14] is the samaration model result of Ref. [16] (MSR); and the dashdotted curve is the LO perturbative QCD calculation of Ref. [15] (TG).

イロト イポト イヨト イヨ

QCD uncertainties in PeV neutrino studies

• Uncertainties in atmospheric neutrino flux (background of cosmic neutrinos) dominated by those on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

• Recent progress in addressing such uncertainties on the nuclear side R. Enberg, et al., PRD 78 043005,2008;

R. Gauld, et al., JHEP 1511 (2015) 009

• not on the projectile side, where the proton charm content can matter at large *x*

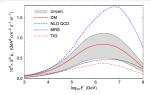


FIG. 6 (color online). Prompt moon neutrino fluxes obtained in perturbative QCD. The shaded area represents the theoretical uncertainty in the prompt neutrino flux evaluated in this paper, and the sold line in the band is our standard result. The dashed curve is the NLO perturbative QCD calculation of Ref. [14] is the samarian model result of Ref. [16] (MSR); and the dashdotted curve is the LO perturbative QCD calculation of Ref. [15] (TIG).

QCD uncertainties in PeV neutrino studies

• Uncertainties in atmospheric neutrino flux (background of cosmic neutrinos) dominated by those on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

• Recent progress in addressing such uncertainties on the nuclear side R. Enberg, et al., PRD 78 043005,2008;

R. Gauld, et al., JHEP 1511 (2015) 009

- not on the projectile side, where the proton charm content can matter at large *x*
- Charm measurements at the LHC are not of great help F. Richn, et al., EPJ W. C. 99 (2015) 12001

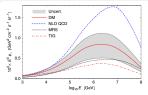


FIG. 6 (color online). Prompt muon neutrino fluxes obtained in perturbative QCD. The shaded area represents the theoretical uncertainty in the prompt neutrino flux evaluated in this paper, and the sold line in the band is our standard result. The dashed curve is the NLO perturbative QCD calculation of Ref. [14] is the samariane model result of Ref. [16] (MSR); and the dashdotted curve is the LO perturbative QCD calculation of Ref. [15] (TIG).

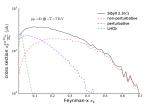


Figure 8. Weighted spectrum for *D*-mesons in SIBYLL at $\sqrt{s} = 7$ TeV. The contributions from the perturbative and non-perturbative model components are shown by the blue and red lines, respectively. Note the negligible contribution to the energy spectrum from the phase space covered by the LHCb experiment (2.5 < y < 4.5 green line).

1) 2 (?

QCD uncertainties in PeV neutrino studies

• Uncertainties in atmospheric neutrino flux (background of cosmic neutrinos) dominated by those on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

• Recent progress in addressing such uncertainties on the nuclear side R. Enberg, et al., PRD 78 043005,2008;

R. Gauld, et al., JHEP 1511 (2015) 009

- not on the projectile side, where the proton charm content can matter at large *x*
- Charm measurements at the LHC are not of great help F. Richn, et al., EPJ W. C. 99 (2015) 12001
- However, LHCb used in the fixed-target mode has a much better coverage $x_F^{collider} = \frac{2m_T}{2E_{hcom}} \sinh(y^{lab.})$; $x_F^{FT} = \frac{2m_T}{\sqrt{2m_F E_{hcom}}} \sinh(y^{lab.} - 4.8)$

$$x_F^{FT}(P_T^D=0, y^{lab.}=2) \simeq -0.2 \ ; \ x_F^{FT}(P_T^D=4 \text{GeV}, y^{lab.}=2) \simeq -0.6$$

J.P. Lansberg (IPNO, Paris-Sud U.)

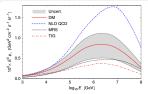


FIG. 6 (color online). Prompt muon neutrino fluxes obtained in perturbative QCD. The shaded area represents the theoretical uncertainty in the prompt neutrino flux evaluated in this paper, and the sold line in the band is our standard result. The dashed curve is the NLO perturbative QCD calculation of Ref. [14] the has auration more the result of Ref. [16] (MSR); and the dashdotted curve is the LO perturbative QCD calculation of Ref. [15] (TGD).

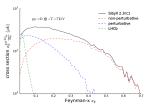


Figure 8. Weighted spectrum for *D*-mesons in SIBYLL at $\sqrt{s} = 7$ TeV. The contributions from the perturbative and non-perturbative model components are shown by the blue and red lines, respectively. Note the negligible contribution to the energy spectrum from the phase space covered by the LHCb experiment ($2.5 \le y < 4.5$ green line).

200

QCD uncertainties in PeV neutrino studies

• Uncertainties in atmospheric neutrino flux (background of cosmic neutrinos) dominated by those on charmed meson decays

IceCube collab. PRL 111 (2013) 021103; Science 342 (2013) 1242856

 Recent progress in addressing such uncertainties on the nuclear side R. Enberg, et al., PRD 78 043005,2008;

R. Gauld, et al., JHEP 1511 (2015) 009

- not on the projectile side, where the proton charm content can matter at large x
- Charm measurements at the LHC are not of great help F. Riehn, et al., EPJ W. C. 99 (2015) 12001
- However, LHCb used in the fixed-target

mode has a much better coverage Similar conclusion for the ALICE muon

spectrometer

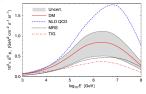
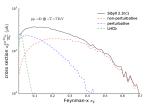



FIG. 6 (color online). Prompt muon neutrino fluxes obtained in perturbative QCD. The shaded area represents the theoretical uncertainty in the prompt neutrino flux evaluated in this paper. and the solid line in the band is our standard result. The dashed curve is the NLO perturbative QCD calculation of Ref. [14] (PRS), modified here to include fragmentation; the dotted curve is the saturation model result of Ref. [16] (MRS); and the dashdotted curve is the LO perturbative OCD calculation of Ref. [15] (TIG).

26/38

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016

イロト イポト イヨト イヨ

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer*

Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, I-09042 Monserrato (CA), Italy

イロト イポト イヨト イヨト

PHYSICAL REVIEW D 86, 094007 (2012)

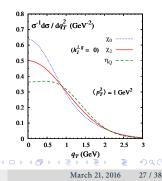
Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

 Low P_T C-even quarkonium production is a good probe of the distribution of linearly polarised gluons in unpolarised protons: h₁^{⊥g}

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

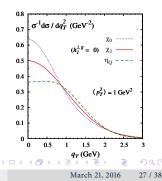

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low P_T C-even quarkonium production is a good probe of the distribution of linearly polarised gluons in unpolarised protons: h₁^{⊥g}
- Affect the low P_T spectra: $\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$ (*R* involves $f_1^g(x, k_T, \mu)$ and $h_1^{\perp g}(x, k_T, \mu)$)

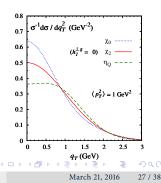

PHYSICAL REVIEW D 86, 094007 (2012)

Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low P_T C-even quarkonium production is a good probe of the distribution of linearly polarised gluons in unpolarised protons: h₁^{⊥g}
- Affect the low P_T spectra: $\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$ (*R* involves $f_1^g(x, k_T, \mu)$ and $h_1^{\perp g}(x, k_T, \mu)$)
- The boost is of great help to access low *P_T P*-wave quarkonia


PHYSICAL REVIEW D 86, 094007 (2012)

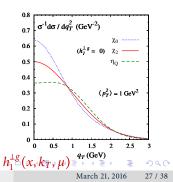
Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low *P_T C*-even quarkonium production is a good probe of the distribution of linearly polarised gluons in unpolarised protons: *h*₁^{⊥g}
- Affect the low P_T spectra: $\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$ (*R* involves $f_1^g(x, k_T, \mu)$ and $h_1^{\perp g}(x, k_T, \mu)$)
- The boost is of great help to access low *P_T P*-wave quarkonia
- $h_1^{\perp g}$ is connected to the Higgs transverse-momentum distribution D. Boer, *et al.* PRL 108 (2012) 032002

PHYSICAL REVIEW D 86, 094007 (2012)


Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER

Daniël Boer* Theory Group, KVI, University of Groningen, Zernikelaan 25, NL-9747 AA Groningen, The Netherlands

Cristian Pisano[†] Istituto Nazionale di Fisica Nucleare, Sezione di Cagliari, C.P. 170, 1-09042 Monserrato (CA), Italy

- Low *P_T C*-even quarkonium production is a good probe of the distribution of linearly polarised gluons in unpolarised protons: *h*₁^{⊥g}
- Affect the low P_T spectra: $\frac{1}{\sigma} \frac{d\sigma(\eta_Q)}{d\mathbf{q}_T^2} \propto 1 - R(\mathbf{q}_T^2) \& \frac{1}{\sigma} \frac{d\sigma(\chi_{0,Q})}{d\mathbf{q}_T^2} \propto 1 + R(\mathbf{q}_T^2)$ (*R* involves $f_1^g(x, k_T, \mu)$ and $h_1^{\perp g}(x, k_T, \mu)$)
- The boost is of great help to access low *P_T P*-wave quarkonia
- $h_1^{\perp g}$ is connected to the Higgs transverse-momentum distribution D. Boer, *et al.* PRL 108 (2012) 032002

• Back-to-back J/ψ pair and $J/\psi + \gamma$ also gives access to $h_1^{\perp g}(x, k_T, \mu)$ J.P. Lansberg (IPNO, Paris-Sud U.)

Part VI

Connections and synergies with COMPASS

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 28 / 38

• □ ▶ • 4 □ ▶ • □ ▶

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 29 / 38

æ

• COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.
- A modern measurement of such a cross section (as well as of the J/ψ polarisation in 3D) is highly desirable

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.
- A modern measurement of such a cross section (as well as of the J/ψ polarisation in 3D) is highly desirable
- Can be extended in 3 ways:

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.
- A modern measurement of such a cross section (as well as of the J/ψ polarisation in 3D) is highly desirable
- Can be extended in 3 ways:
 - with polarised target to study the Sivers effect

(quark or gluon: theory should tell)

• □ ▶ • • □ ▶ • • □ ▶

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.
- A modern measurement of such a cross section (as well as of the J/ψ polarisation in 3D) is highly desirable
- Can be extended in 3 ways:
 - with polarised target to study the Sivers effect

(quark or gluon: theory should tell)

イロト イポト イヨト イヨト

• with different nuclear targets

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.
- A modern measurement of such a cross section (as well as of the J/ψ polarisation in 3D) is highly desirable
- Can be extended in 3 ways:
 - with polarised target to study the Sivers effect

(quark or gluon: theory should tell)

イロト イポト イヨト イヨト

- with different nuclear targets
- with a 3D (θ and ϕ) polarisation analysis

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.
- A modern measurement of such a cross section (as well as of the J/ψ polarisation in 3D) is highly desirable
- Can be extended in 3 ways:
 - with polarised target to study the Sivers effect

(quark or gluon: theory should tell)

- with different nuclear targets
- with a 3D (θ and ϕ) polarisation analysis

• J/ψ -pair production first observed by NA3 in π -induced collisions large- x_F excess interpreted by S.J. Brodsky as from Intrinsic Charm

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

- COMPASS can also definitely contribute to the understanding of nuclear matter effect on quarkonia
- Unique access to π -induced J/ψ production See W.C. Chang's talk, this morning.
- A modern measurement of such a cross section (as well as of the J/ψ polarisation in 3D) is highly desirable
- Can be extended in 3 ways:
 - with polarised target to study the Sivers effect

(quark or gluon: theory should tell)

- with different nuclear targets
- with a 3D (θ and ϕ) polarisation analysis

• J/ψ -pair production first observed by NA3 in π -induced collisions large- x_F excess interpreted by S.J. Brodsky as from Intrinsic Charm

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

Part VII

Further readings

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 30 / 38

Heavy-Ion Physics

- Gluon shadowing effects on J/ψ and Y production in p+Pb collisions at √s_{NN} = 115 GeV and Pb+p collisions at √s_{NN} = 72 GeV at AFTER@LHC by R. Vogt. Adv.Hi.En.Phys. (2015) 492302.
- Prospects for open heavy flavor measurements in heavy-ion and p+A collisions in a fixed-target experiment at the LHC by D. Kikola. Adv.Hi.En.Phys. (2015) 783134
- Quarkonium suppression from coherent energy loss in fixed-target experiments using LHC beams by F. Arleo, S.Peigné. [arXiv:1504.07428 [hep-ph]]. Adv.Hi.En.Phys. (2015) 961951
- Anti-shadowing Effect on Charmonium Production at a Fixed-target Experiment Using LHC Beams by K. Zhou, Z. Chen, P. Zhuang. Adv.High Energy Phys. 2015 (2015) 439689
- Lepton-pair production in ultraperipheral collisions at AFTER@LHC By J.P. Lansberg, L. Szymanowski, J. Wagner. JHEP 1509 (2015) 087
- Quarkonium Physics at a Fixed-Target Experiment using the LHC Beams. By J.P. Lansberg, S.J. Brodsky, F. Fleuret, C. Hadjidakis. [arXiv:1204.5793 [hep-ph]]. Few Body Syst. 53 (2012) 11.

イロト イ部ト イヨト イヨト 二日

Spin physics

- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment by K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. [arXiv:1502.04021 [hep-ph]. Adv.Hi.En.Phys. (2015) 257934.
- Transverse single-spin asymmetries in proton-proton collisions at the AFTER@LHC experiment in a TMD factorisation scheme by M. Anselmino, U. D'Alesio, and S. Melis. [arXiv:1504.03791 [hep-ph]]. Adv.Hi.En.Phys. (2015) 475040.
- The gluon Sivers distribution: status and future prospects by D. Boer, C. Lorcé, C. Pisano, and J. Zhou. [arXiv:1504.04332 [hep-ph]]. Adv.Hi.En.Phys. (2015) 371396
- Azimuthal asymmetries in lepton-pair production at a fixed-target experiment using the LHC beams (AFTER) By T. Liu, B.Q. Ma. Eur.Phys.J. C72 (2012) 2037.
- Polarized gluon studies with charmonium and bottomonium at LHCb and AFTER By D. Boer, C. Pisano. Phys.Rev. D86 (2012) 094007.

イロト イヨト イヨト イヨト

Hadron structure

- Double-quarkonium production at a fixed-target experiment at the LHC (AFTER@LHC). by J.P. Lansberg, H.S. Shao. [arXiv:1504.06531 [hep-ph]]. Nucl.Phys. B900 (2015) 273-294
- Next-To-Leading Order Differential Cross-Sections for Jpsi, psi(2S) and Upsilon Production in Proton-Proton Collisions at a Fixed-Target Experiment using the LHC Beams (AFTER@LHC) by Y. Feng, and J.X. Wang. Adv.Hi.En.Phys. (2015) 726393.
- η_c production in photon-induced interactions at a fixed target experiment at LHC as a probe of the odderon
 By V.P. Goncalves, W.K. Sauter. arXiv:1503.05112 [hep-ph].Phys.Rev. D91 (2015) 9, 094014.
- A review of the intrinsic heavy quark content of the nucleon by S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt. Adv.Hi.En.Phys. (2015) 231547.
- Hadronic production of Ξ_{cc} at a fixed-target experiment at the LHC By G. Chen et al.. Phys.Rev. D89 (2014) 074020.

イロト イポト イヨト イヨト

Feasibility study and technical ideas

- Feasibility studies for quarkonium production at a fixed-target experiment using the LHC proton and lead beams (AFTER@LHC) by L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J.P.Lansberg, and H.S. Shao arXiv:1504.05145 [hep-ex]. Adv.Hi.En.Phys. (2015) 986348
- A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions by C. Barschel, P. Lenisa, A. Nass, and E. Steffens. Adv.Hi.En.Phys. (2015) 463141
- *Quarkonium production and proposal of the new experiments on fixed target at LHC* by N.S. Topilskaya, and A.B. Kurepin. Adv.Hi.En.Phys. (2015) 760840

Generalities

 Physics Opportunities of a Fixed-Target Experiment using the LHC Beams By S.J. Brodsky, F. Fleuret, C. Hadjidakis, J.P. Lansberg. [arXiv:1202.6585 [hep-ph]]. Phys.Rept. 522 (2013) 239.

http://www.hindawi.com/journals/ahep/si/354953/

1	
Journal Menu	Physics at a Fixed-Target Experiment Using the LHC Beams
-	Guest Editors: Jean-Philippe Lansberg, Gianluca Cavoto, Cynthia Hadjidakis, Jibo
 About this Journal 	He, Cédric Lorcé, and Barbara Trzeciak
Abstracting and Indexing	Physics at a Fixed-Target Experiment Using the LHC Beams, Jean-Philippe
 Advance Access 	Lansberg, Gianluca Cavoto, Cynthia Hadjidakis, Jibo He, Cédric Lorcé, and
Aims and Scope	Barbara Trzeciak
Annual Issues	Volume 2015 (2015), Article ID 319654, 2 pages
 Article Processing Charges 	▶ Next-to-Leading Order Differential Cross Sections for 1/19, 10(25), and Y
Articles in Press	Production in Proton-Proton Collisions at a Fixed-Target Experiment Using
Author Guidelines	the LHC Beams, Yu Feng and Jian-Xiong Wang
 Bibliographic Information 	Volume 2015 (2015), Article ID 726393, 7 pages
 Citations to this Journal 	h The Clean Oracle Distribution Dates and Paters Bernards, Deattl Base Cildra Land, Orates Brown
 Contact Information 	The Gluon Sivers Distribution: Status and Future Prospects, Daniël Boer, Cédric Lorcé, Cristian Pisano, and Jian Zhou
Editorial Board	Volume 2015 (2015), Article ID 371396, 10 pages
Editorial Workflow	
 Free eTOC Alerts 	Studies of Backward Particle Production with a Fixed-Target Experiment Using the LHC Beams, Federico
 Publication Ethics 	Alberto Ceccopieri
 Reviewers Acknowledgment 	Volume 2015 (2015), Article ID 652062, 9 pages
 Submit a Manuscript 	Bremsstrahlung from Relativistic Heavy Ions in a Fixed Target Experiment at the LHC, Rune E.
Subscription Information	Mikkelsen, Allan H. Sørensen, and Ulrik I. Uggerhøj
Table of Contents	Volume 2015 (2015), Article ID 625473, 4 pages
	Antishadowing Effect on Charmonium Production at a Fixed-Target Experiment Using LHC Beams, Kal
	Zhou, Zhengyu Chen, and Pengfei Zhuang
Open Special Issues Published Special Issues	Volume 2015 (2015), Article ID 439689, 8 pages
Special Issue Guidelines	
 special issue Guidelines 	 Quarkonium Production and Proposal of the New Experiments on Fixed Target at the LHC, A. B. Kurepin and N. S. Topilskaya
	Volume 2015 (2015), Article ID 760840, 13 pages
	Quarkonium Suppression from Coherent Energy Loss in Fixed-Target Experiments Using LHC Beams.
	François Arleo and Stéphane Peigné
	Volume 2015 (2015), Article ID 961951, 6 pages
	▶ Transverse Single-Spin Asymmetries in Proton-Proton Collisions at the AFTER@LHC Experiment in a
	TMD Factorisation Scheme, M. Anselmino, U. D'Alesio, and S. Melis
	Volume 2015 (2015), Article ID 475040, 12 pages
	▶ Transverse Single-Spin Asymmetries in Proton-Proton Collisions at the AFTER@LHC Experiment, K.
	Kanazawa, Y. Koike, A. Metz, and D. Pitonyak
	Volume 2015 (2015), Article ID 257934, 9 pages
	Feasibility Studies for Quarkonium Production at a Fixed-Target Experiment Using the LHC Proton and Lead Beams (AFTER@LHC), L. Massacrier, B. Trzeciak, F. Fleuret, C. Hadjidakis, D. Kikola, J. P.
	Lansberg, and HS. Shao
	Volume 2015 (2015), Article ID 986348, 15 pages
	▶ Gluon Shadowing Effects on J/ψ and Y Production in p + Pb Collisions at √P _{NN} = 115 GeV and Pb + p
	Collisions at $\sqrt{s_{NN}} = 72 \mathrm{GeV}$ at AFTER@LHC, R. Vogt
	Volume 2015 (2015), Article ID 492302, 10 pages
	▶ Prospects for Open Heavy Flavor Measurements in Heavy Ion and p + A Collisions in a Fixed-Target
	Experiment at the LHC, Daniel Kikoła
	Volume 2015 (2015), Article ID 783134, 8 pages
	A Gas Target Internal to the LHC for the Study of pp Single-Spin Asymmetries and Heavy Ion Collisions,
	Colin Barschel, Paolo Lenisa, Alexander Nass, and Erhard Steffens
	Volume 2015 (2015), Article ID 463141, 6 pages
	A Review of the Intrinsic Heavy Quark Content of the Nucleon, S. J. Brodsky, A. Kusina, F. Lyonnet, I. Schienbein, H. Spiesberger, and R. Vogt
	Volume 2015 (2015). Article ID 231547. 12 pages
	volume aves (aves), results to aves v, in pages

See also

Physics Reports 522 (2013) 239-255

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky^a, F. Fleuret^b, C. Hadjidakis^c, J.P. Lansberg^{c,*}

* SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA

^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNRS/IN2P3, 91128 Palaiseau, France ^c IPNO, Université Paris-Sud, CNRS/IN2P3, 91406 Orsav, France

Contents

1. 2.		duction	i.	Ę
		Key numbers and features		
3.	Nucleon partonic structure			6
		Drell-Yan		6
	3.2.			6
		3.2.1. Quarkonia		6
		3.2.2. Jets		V
				7
		3.2.3. Direct/isolated photons		7
	3.3.	Gluons in the deuteron and in the neutron	£	E
	3.4.	Charm and bottom in the proton		8
		3.4.1. Open-charm production		8
		3.4.2. $J/\psi + D$ meson production		8
		3.4.3. Heavy-quark plus photon production		8
4.	Spin	physics		8
	4.1.	Transverse SSA and DY)	Ē
	4.2.	Quarkonium and heavy-quark transverse SSA		9
	4.3.	Transverse SSA and photon		9
	4.4.	Spin asymmetries with a final state polarization		9
5.	Nucle	Nuclear matter		
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp		A
	5.2.	Gluon nPDF		R
		5.2.1. Isolated photons and photon-jet correlations 5.2.2. Precision quarkonium and heavy-flavour studies		

5.3. Color filtering, energy loss, Sudakov suppression and hadron break-up in the nucleus

6.	Deconfinement in heavy-ion collisions		
	6.1.	Quarkonium studies	
	6.2.	let quenching	
	6.3.	Direct photon	
	6.4.	Deconfinement and the target rest frame	
	6.5.	Nuclear-matter baseline	
7.	W an	d Z boson production in pp, pd and pA collisions	
	7.1.	First measurements in pA	
	7.2.	W/Z production in pp and pd	
8.	Exclusive, semi-exclusive and backward reactions		
	8.1.	Ultra-peripheral collisions	
	8.2.	Hard diffractive reactions	
	8.3.	Heavy-hadron (diffractive) production at $x_F \rightarrow -1$	
	8.4.	Very backward physics	
	8.5.	Direct hadron production	
9.	Furth	er potentialities of a high-energy fixed-target set-up.	
	9.1.	D and B physics	
	9.2.	Secondary beams	
	9.3.	Forward studies in relation with cosmic shower	
0.	Concl	usions.	
	Ackno	wledgments	
		ences	

AFTER@LHC

지니 제 지금에 제품에 지불해 주는 것

Part VIII

Conclusion and outlooks

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 37 / 38

イロト イポト イヨト イヨ

• THREE MAIN THEMES PUSH FOR A FIXED-TARGET PROGRAM AT THE LHC [without interfering with the other experiments]

3

 $\bullet~$ Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

イロト イポト イヨト イヨ

 $\bullet~$ Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

• The nucleon spin and the transverse dynamics of the partons

• Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes

• Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition.

new energy, new rapidity domain and new probes

• 2 ways towards fixed-target collisions with the LHC beams

• Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

• □ ▶ • • □ ▶ • □ ▶ • □ ▶

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...

• Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...
- An Expression of Interest to be submitted to the LHCC is being written to be finished before the NuPECC LRP

• Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

イロト イポト イヨト イヨト

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...
- An Expression of Interest to be submitted to the LHCC is being written to be finished before the NuPECC LRP
- Additional contributions are always welcome !

• Three main themes push for a fixed-target program at the LHC

[without interfering with the other experiments]

• The large *x* frontier: new probes of the confinement

and connections with astroparticles

- The nucleon spin and the transverse dynamics of the partons
- The approach to the deconfinement phase transition: new energy, new rapidity domain and new probes
- 2 ways towards fixed-target collisions with the LHC beams
 - A slow extraction with a bent crystal
 - An internal gas target inspired from SMOG@LHCb/Hermes/H-jet@RHIC, ...
- An Expression of Interest to be submitted to the LHCC is being written to be finished before the NuPECC LRP
- Additional contributions are always welcome !
- Strong similarities and complementarities between COMPASS pion runs and AFTER@LHC: Synergies useful to keep young colleagues in the field ■ ▶ ■ J.P. Lansberg (IPNO, Paris-Sud U.) AFTER@LHC March 21, 2016 38 / 38

Part IX

Backup slides

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 39 / 38

æ

イロト イヨト イヨト イヨト

First simulation: is the boost an issue ?

B. Trzeciak, L. Massacrier et al., Adv.Hi.En.Phys. (2015) 986348

AFTER@LHC

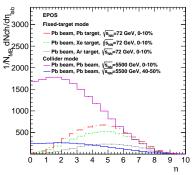
March 21, 2016 40 / 38

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

B. Trzeciak, L. Massacrier et al., Adv.Hi.En.Phys. (2015) 986348

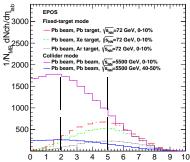
イロト イヨト イヨト イヨ

• LHCb has successfully carried out *p*Pb and Pbp analyses at 5 TeV


B. Trzeciak, L. Massacrier et al., Adv.Hi.En.Phys. (2015) 986348

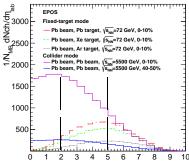
イロト イポト イヨト イヨ

- LHCb has successfully carried out *p*Pb and Pbp analyses at 5 TeV
- We have compared the multiplicity as function of η in the collider mode ($\sqrt{s} = 5$ TeV) vs. that in fixed target mode ($\sqrt{s} = 115$ TeV) using EPOS


B. Trzeciak, L. Massacrier et al., Adv.Hi.En.Phys. (2015) 986348

- LHCb has successfully carried out pPb and Pbp analyses at 5 TeV
- We have compared the multiplicity as function of η in the collider mode ($\sqrt{s} = 5$ TeV) vs. that in fixed target mode ($\sqrt{s} = 115$ TeV) using EPOS

B. Trzeciak, L. Massacrier et al., Adv.Hi.En.Phys. (2015) 986348


- LHCb has successfully carried out *p*Pb and Pbp analyses at 5 TeV
- We have compared the multiplicity as function of η in the collider mode ($\sqrt{s} = 5$ TeV) vs. that in fixed target mode ($\sqrt{s} = 115$ TeV) using EPOS

Despite the boost, the multiplicity in the LHCb acceptance [forward η] is lower in the fixed mode than in the collider mode (at higher √s)

B. Trzeciak, L. Massacrier et al., Adv.Hi.En.Phys. (2015) 986348

- LHCb has successfully carried out *p*Pb and Pbp analyses at 5 TeV
- We have compared the multiplicity as function of η in the collider mode ($\sqrt{s} = 5$ TeV) vs. that in fixed target mode ($\sqrt{s} = 115$ TeV) using EPOS

- Despite the boost, the multiplicity in the LHCb acceptance [forward η] is lower in the fixed mode than in the collider mode (at higher √s)
- Simulation backed-up with a comparison of the number-of-track distribution between simulations at the detector level and data

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

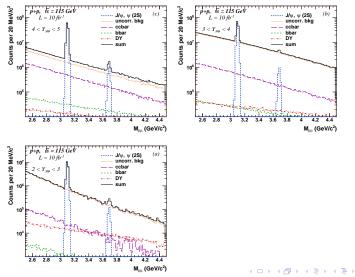
March 21, 2016 40 / 38

Fast simulation using LHCb reconstruction parameters

Projection for a LHCb-like detector

L. Massacrier, B. Trzeciak, et al., Adv.Hi.En.Phys. (2015) 986348

- Simulations with Pythia 8.185
- the LHCb detector is NOT simulated but LHCb reconstruction parameters are introduced in the fast simulation (resolution, analysis cuts, efficiencies,...)
- Requirements:
 - Momentum resolution : $\Delta p/p = 0.5\%$
 - Muon identification efficiency: 98%
- Cuts at the single muon level
 - $2 < \eta_{\mu} < 5$
 - $p_{T\mu} > 0.7 \text{ GeV}$
- Muon misidentification:
 - If π and *K* decay before the calorimeters (12m), they are rejected by the tracking
 - otherwise a misidentification probability is applied following: F. Achilli et al, arXiv:1306.0249

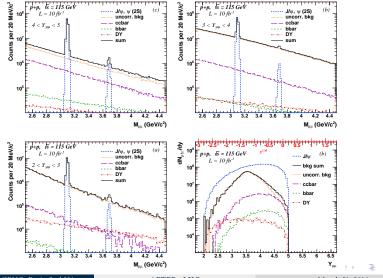

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 41 / 38

Charmonium background & its rapidity dependence

B. Trzeciak, L. Massacrier et al., 1504.05145 [hep-ex], Adv.Hi.En.Phys. (2015) 986348

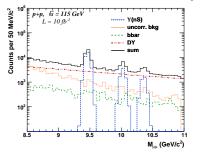

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 42 / 38

Charmonium background & its rapidity dependence

B. Trzeciak, L. Massacrier et al., 1504.05145 [hep-ex], Adv.Hi.En.Phys. (2015) 986348

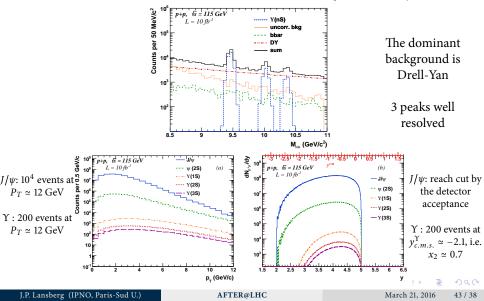


J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

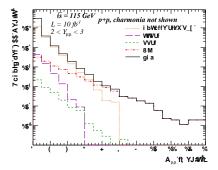
Bottomonium background & signal reach

B. Trzeciak, L. Massacrier et al., 1504.05145 [hep-ex], Adv.Hi.En.Phys. (2015) 986348

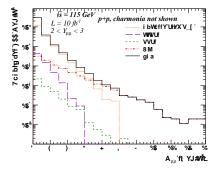

The dominant background is Drell-Yan

3 peaks well resolved

AFTER@LHC

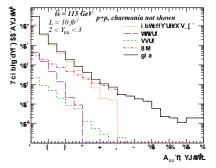

Bottomonium background & signal reach

B. Trzeciak, L. Massacrier et al., 1504.05145 [hep-ex], Adv.Hi.En.Phys. (2015) 986348


Drell-Yan background & signal reach

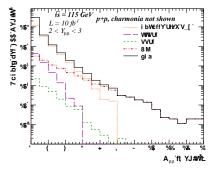
● At backward rapidities, quark-induced processes are favoured ⇒ Bkgd get smaller

Drell-Yan background & signal reach


● At backward rapidities, quark-induced processes are favoured ⇒ Bkgd get smaller

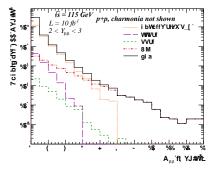
• Charm and beauty background can be cut (2nd vertex) but interesting on their own

Drell-Yan background & signal reach

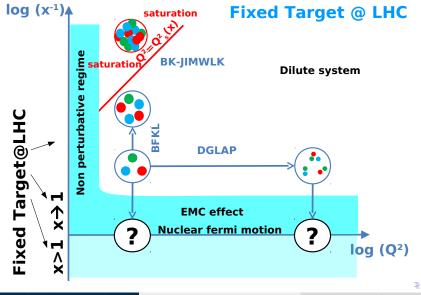

● At backward rapidities, quark-induced processes are favoured ⇒ Bkgd get smaller

- Charm and beauty background can be cut (2nd vertex) but interesting on their own
- Uncorrelated background can be subtracted by the mixing-event method [up to which *S*/*B* depends on the systematics of the subtraction]

Drell-Yan background & signal reach

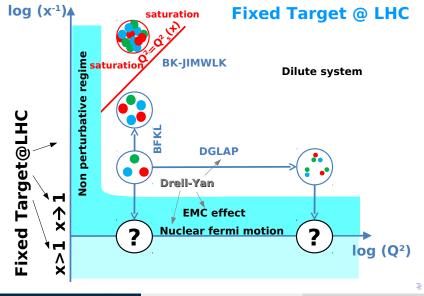

● At backward rapidities, quark-induced processes are favoured ⇒ Bkgd get smaller

- Charm and beauty background can be cut (2nd vertex) but interesting on their own
- Uncorrelated background can be subtracted by the mixing-event method [up to which *S*/*B* depends on the systematics of the subtraction]
- Still 4000+ DY events left in 2 < Y < 3 for 8 < M < 9 GeV, *i.e.* at $x^{\uparrow} \simeq 0.7$


Drell-Yan background & signal reach

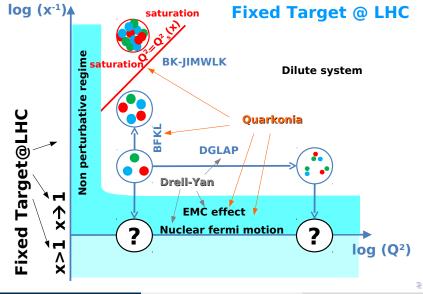
● At backward rapidities, quark-induced processes are favoured ⇒ Bkgd get smaller

- Charm and beauty background can be cut (2nd vertex) but interesting on their own
- Uncorrelated background can be subtracted by the mixing-event method [up to which *S*/*B* depends on the systematics of the subtraction]
- Still 4000+ DY events left in 2 < Y < 3 for 8 < M < 9 GeV, *i.e.* at $x^{\uparrow} \simeq 0.7$


Overall

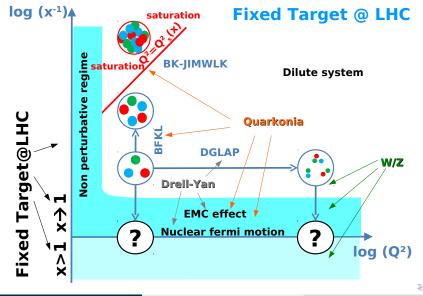
J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC


Overall

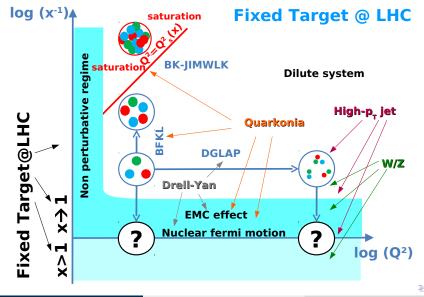
J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC


Overall

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC


Overall

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

Overall

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

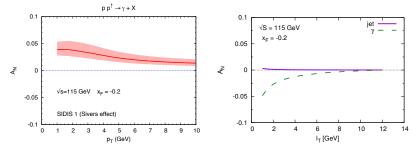
Gas target

C. Barschel, P. Lenisa, A. Nass, and E. Steffens, Adv.Hi.En.Phys. (2015) 463141

TABLE 1: Comparison of gas targets in storage rings with a hypothetical target for the proposed AFTER@LHC initiative [1, 2]. The target gas ¹H, ²D, or ³He is assumed to be spin polarized.

Storage ring	Particle	E _{max} [GeV]	Target type	L [m]	T [K]	L _{max} [1/cm ² s]	Remarks	Reference
HERA-e DESY (term. 2007)	e [±] pol.	27.6	Cell ¹ H, ² D, ³ He	0.4	100 25	$\begin{array}{c} 2.5 \cdot 10^{31} \\ 2.5 \cdot 10^{32} \end{array}$	HERMES exp. 1995–2007	[9]
RHIC-p BNL	p pol.	250	Jet	_	_	$1.7\cdot 10^{30}$	Absolute p polarimeter	[10]
COSY FZ Jülich	p, d pol.	$\begin{array}{c} 3.77\\ T=49.3\mathrm{MeV} \end{array}$	Cell ¹ H, ² D Cell ¹ H	0.4	300	10^{29} 2.75 · 10 ²⁹	ANKE exp. PAX exp.	[4, 5] [11]
LHC CERN (proposed)	p unpol. heavy ions	7,000 2,760 · A	Cell ¹ H, ² D Xe $M \approx 131$	1.0	100 ≥100	$10^{33} \\ 10^{27} - 10^{28}$	Based on techn. of HERMES target	this paper

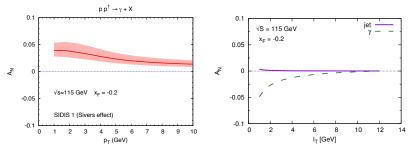
 \rightarrow beam lifetime with $\mathcal{L}_{pp} = 10^{33} \text{ cm}^{-2} \text{s}^{-1} = 10 \text{ nb}^{-1} \text{s}^{-1} \text{of } 2 \times 10^{6} \text{ s}$ (or 23 days).


イロト イポト イヨト イヨト

Further studies of the Sivers effect

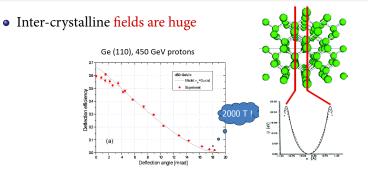
• A_N^{γ} is predicted to have an opposite sign between the Generalised Parton Model (GPM) and the Collinear-Twist 3 (CT3) approach

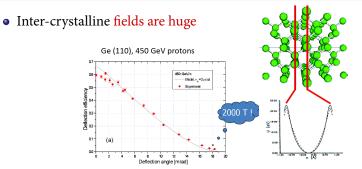
GPM: M. Anselmino, U. D'Alesio, S. Melis. Adv.Hi.En.Phys. (2015) 475040 CT3: K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. Adv.Hi.En.Phys. (2015) 257934.



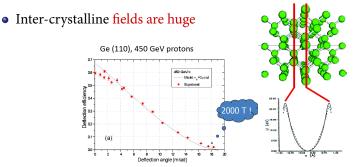
Further studies of the Sivers effect

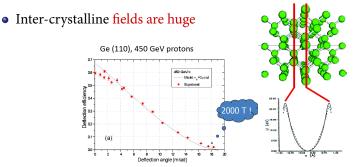
 A^γ_N is predicted to have an opposite sign between the Generalised Parton Model (GPM) and the Collinear-Twist 3 (CT3) approach


GPM: M. Anselmino, U. D'Alesio, S. Melis. Adv.Hi.En.Phys. (2015) 475040 CT3: K. Kanazawa, Y. Koike, A. Metz, and D. Pitonyak. Adv.Hi.En.Phys. (2015) 257934.


• A_N^{π} : sign mismatch issue with $f_{1T}^{\perp,q}(x, \vec{k}_{\perp}^2)$ extracted from SIDIS

- A_N^{jet} : complementary since no "contamination" (fragmentation Collins effect)
- A_N^{π} should be measured at larger p_T

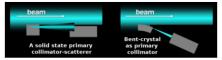

イロト イポト イヨト イヨ


AFTER@LHC

• The channeling efficiency is high for a deflection of a few mrad

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss $(10^9 p^+ s^{-1})$

- The channeling efficiency is high for a deflection of a few mrad
- One can extract a significant part of the beam loss $(10^9 p^+ s^{-1})$
- Simple and robust way to extract the most energetic beam ever:



The beam extraction: news

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013]

Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

イロト イポト イヨト イヨ

UA9 installation in the SPS

Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

The beam extraction: news

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013] Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

イロト イヨト イヨト イヨ

LUA9 future installation in LHC

Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

The beam extraction: news

[S. Montesano, Physics at AFTER using LHC beams, ECT* Trento, Feb. 2013]

Goal : assess the possibility to use bent crystals as primary collimators in hadronic accelerators and colliders

LUA9 future installation in LHC

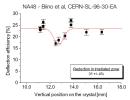
Prototype crystal collimation system at SPS :

- local beam loss reduction (5÷20x reduction for proton beam)
- · beam loss map show average loss reduction in the entire SPS ring
- halo extraction efficiency 70÷80% for protons (50÷70% for Pb)

Towards an installation in the LHC : propose and install during LSI a min. number of devices

• 2 crystals

Long term plan is ambitious : propose a collimation system based on bent crystals for the upgrade of the current LHC collimation system


イロト イヨト イヨト イヨト

Simone Montesano - February 11th, 2013 - Physics at AFTER using the LHC beams

Crystal resistance to irradiation

- IHEP U-70 (Biryukov et al, NIMB 234, 23-30):
 - 70 GeV protons, 50 ms spills of 10¹⁴ protons every 9.6 s, several minutes irradiation
 - · equivalent to 2 nominal LHC bunches for 500 turns every 10 s
 - · 5 mm silicon crystal, channeling efficiency unchanged
- · SPS North Area NA48 (Biino et al, CERN-SL-96-30-EA):
 - 450 GeV protons, 2.4 s spill of 5 x 10¹² protons every 14.4 s, one year irradiation, 2.4 x 10²⁰ protons/cm² in total,
 - · equivalent to several year of operation for a primary collimator in LHC
 - 10 x 50 x 0.9 mm³ silicon crystal, 0.8 x 0.3 mm² area irradiated, channeling efficiency reduced by 30%.
- · HRMT16-UA9CRY (HiRadMat facility, November 2012):
 - 440 GeV protons, up to 288 bunches in 7.2 µs, 1.1 x 10¹¹ protons per bunch (3 x 10¹³ protons in total)
 - · energy deposition comparable to an asynchronous beam dump in LHC
 - 3 mm long silicon crystal, no damage to the crystal after accurate visual inspection, more tests planned to assess possible crystal lattice damage
 - · accurate FLUKA simulation of energy deposition and residual dose

S. Montesano (CERN - EN/STI) @ ECT* Trento workshop, Physics at AFTER using the LHC beams (Feb. 2013)

AFTER@LHC

- Beam loss: $10^9 p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 p^+ s^{-1}$ (1/2 the beam loss)

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31

イロト イヨト イヨト イヨト

- Beam loss: 10⁹ *p*⁺ s⁻¹
- Extracted intensity: $5 \times 10^8 p^+ s^{-1}$ (1/2 the beam loss)

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31

• Number of p^+ : 2808 bunches of $1.15 \times 10^{11}p^+ = 3.2 \times 10^{14}p^+$

イロト イポト イヨト イヨト

- Beam loss: 10⁹ p⁺ s⁻¹
- Extracted intensity: $5 \times 10^8 p^+ s^{-1}$ (1/2 the beam loss)

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31

- Number of p^+ : 2808 bunches of $1.15 \times 10^{11}p^+ = 3.2 \times 10^{14}p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of 3.10⁵ km.s⁻¹/27 km ≃ 11 kHz

イロト イヨト イヨト イヨト

- Beam loss: 10⁹ p⁺ s⁻¹
- Extracted intensity: $5 \times 10^8 p^+ s^{-1}$ (1/2 the beam loss)

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31

- Number of p^+ : 2808 bunches of $1.15 \times 10^{11}p^+ = 3.2 \times 10^{14}p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of 3.10^5 km.s⁻¹/27 km $\simeq 11$ kHz
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \text{ s}^{-1} \simeq 3.10^7 \text{ bunches s}^{-1}$
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,

pile-up is not an issue

イロト イ部ト イヨト イヨト 二日

- Beam loss: 10⁹ *p*⁺ s⁻¹
- Extracted intensity: $5 \times 10^8 p^+ s^{-1}$ (1/2 the beam loss)

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31

- Number of p^+ : 2808 bunches of $1.15 \times 10^{11}p^+ = 3.2 \times 10^{14}p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of 3.10⁵ km.s⁻¹/27 km ≃ 11 kHz
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \text{ s}^{-1} \simeq 3.10^7 \text{ bunches s}^{-1}$
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

イロト イ部ト イヨト イヨト 二日

pile-up is not an issue

- Beam loss: $10^9 p^+ s^{-1}$
- Extracted intensity: $5 \times 10^8 p^+ s^{-1}$ (1/2 the beam loss)

E. Uggerhøj, U.I Uggerhøj, NIM B 234 (2005) 31

- Number of p^+ : 2808 bunches of $1.15 \times 10^{11}p^+ = 3.2 \times 10^{14}p^+$
- Revolution frequency: Each bunch passes the extraction point at a rate of 3.10⁵ km.s⁻¹/27 km ≃ 11 kHz
- Extracted "mini" bunches:
 - the crystal sees $2808 \times 11000 \text{ s}^{-1} \simeq 3.10^7 \text{ bunches s}^{-1}$
 - one extracts $5.10^8/3.10^7 \simeq 15p^+$ from each bunch at each pass
 - Provided that the probability of interaction with the target is below 5%,
- Extraction over a 10h fill:
 - $5 \times 10^8 p^+ \times 3600 \text{ s } \text{h}^{-1} \times 10 \text{ h} = 1.8 \times 10^{13} p^+ \text{ fill}^{-1}$
 - This means $1.8 \times 10^{13}/3.2 \times 10^{14} \simeq 5.6\%$ of the p^+ in the beam

These protons are lost anyway !

イロト イ部ト イヨト イヨト 二日

• similar figures for the Pb-beam extraction

J.P. Lansberg (IPNO, Paris-Sud U.)

AFTER@LHC

March 21, 2016 51 / 38

pile-up is not an issue

Our idea is not completely new

Nuclear Instruments and Methods in Physics Research A 333 (1993) 125-135 North-Holland

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH Section A

LHB, a fixed target experiment at LHC to measure CP violation in B mesons Flavio Costantini

Flavio Costantini

University of Pisa and INFN, Italy

A fixed target experiment at LHC to measure CP violation in B mesons is presented. A description of the proposed apparatus is given together with its sensitivity on the CP violation asymmetry measurement for the two benchmark decay channels $B^0 \rightarrow J/\psi + K_s^0$, $B^0 \rightarrow \pi^+ \pi^-$. The possibility of obtaining an extracted LHC beam hinges on channeling in a bent silicon crystal. Recent results on beam extraction efficiencies measured at CERN SPS based on this technique are presented.

Our idea is not completely new

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beam using a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

Our idea is not completely new

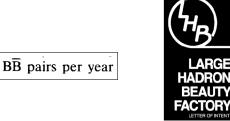
1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10³⁴ cm⁻²s⁻¹ luminosity [5].

• *B*-factories: 1 ab^{-1} means $10^9 B\bar{B}$ pairs

LARGE HADRON BEAUTY FACTORY


BB pairs per year

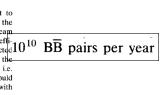
Our idea is not completely new

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10 10 beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BE pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10³⁴ cm⁻²s⁻¹ luminosity [5].

• □ ▶ • □ ▶ • □ ▶ • •

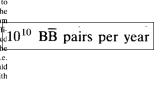

- *B*-factories: 1 ab^{-1} means $10^9 B\bar{B}$ pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV

Our idea is not completely new

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

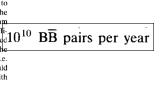

- *B*-factories: 1 ab⁻¹ means 10⁹ *B*B̄ pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.

Our idea is not completely new

1. Introduction

•••

This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].


- *B*-factories: 1 ab⁻¹ means 10⁹ *B*B̄ pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- Nowadays, degradation is known to be $\simeq 6\%$ per 10^{20} particles/cm²
- 10²⁰ particles/cm² : one year of operation for realistic conditions

Our idea is not completely new

1. Introduction

•••

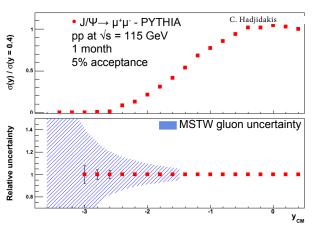
This paper presents a fixed target experiment to measure CP violation in the B system based on the possibility of extracting the 8 TeV LHC proton beamusing a bent silicon crystal [4]. A 10% extraction efficiency of the LHC beam halo will give an extracted 10^{10} beam intensity of about 10⁸ protons/s allowing the production of as many as 10¹⁰ BB pairs per year, i.e. about two orders of magnitude more than what could be produced by an e⁺e⁻ asymmetric B factory with 10^{34} cm⁻²s⁻¹ luminosity [5].

- *B*-factories: 1 ab⁻¹ means 10⁹ *B*B̄ pairs
- For LHCb, typically 1 fb⁻¹ means $\simeq 2 \times 10^{11} B\bar{B}$ pairs at 14 TeV
- LHB turned down in favour of LHCb mainly because of the fear of a premature degradation of the bent crystal due to radiation damages.
- Nowadays, degradation is known to be $\simeq 6\%$ per 10^{20} particles/cm²
- 10²⁰ particles/cm² : one year of operation for realistic conditions
- After a year, one simply moves the crystal by less than one mm ...

AFTER@LHC

Accessing the large *x* glue with quarkonia:

PYTHIA simulation $\sigma(y) / \sigma(y=0.4)$ statistics for one month 5% acceptance considered


Statistical relative uncertainty Large statistics allow to access very backward region

Gluon uncertainty from MSTWPDF - only for the gluon content of the target - assuming

 $\begin{array}{l} J/\Psi \\ y_{_{CM}} \sim \ 0 \ \rightarrow x_{_{g}} = 0.03 \\ y_{_{CM}} \sim -3.6 \ \rightarrow x_{_{g}} = 1 \end{array}$

Y: larger x_g for same y_{CM} $y_{CM} \sim 0 \rightarrow x_g = 0.08$ $y_{CM} \sim -2.4 \rightarrow x_g = 1$

J.P. Lansberg (IPNO, Paris-Sud U.)

⇒ Backward measurements allow to access large x gluon pdf

Assuming that we understand the quarkonium-production mechanisms

AFTER@LHC